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Convergent somatic mutations in 
metabolism genes in chronic liver disease
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The progression of chronic liver disease to hepatocellular carcinoma is caused by the 
acquisition of somatic mutations that affect 20–30 cancer genes1–8. Burdens of 
somatic mutations are higher and clonal expansions larger in chronic liver disease9–13 
than in normal liver13–16, which enables positive selection to shape the genomic 
landscape9–13. Here we analysed somatic mutations from 1,590 genomes across 34 
liver samples, including healthy controls, alcohol-related liver disease and 
non-alcoholic fatty liver disease. Seven of the 29 patients with liver disease had 
mutations in FOXO1, the major transcription factor in insulin signalling. These 
mutations affected a single hotspot within the gene, impairing the insulin-mediated 
nuclear export of FOXO1. Notably, six of the seven patients with FOXO1S22W hotspot 
mutations showed convergent evolution, with variants acquired independently by up 
to nine distinct hepatocyte clones per patient. CIDEB, which regulates lipid droplet 
metabolism in hepatocytes17–19, and GPAM, which produces storage triacylglycerol 
from free fatty acids20,21, also had a significant excess of mutations. We again observed 
frequent convergent evolution: up to fourteen independent clones per patient with 
CIDEB mutations and up to seven clones per patient with GPAM mutations. Mutations 
in metabolism genes were distributed across multiple anatomical segments of the 
liver, increased clone size and were seen in both alcohol-related liver disease and 
non-alcoholic fatty liver disease, but rarely in hepatocellular carcinoma. Master 
regulators of metabolic pathways are a frequent target of convergent somatic 
mutation in alcohol-related and non-alcoholic fatty liver disease.

The most common causes of chronic liver disease are chronic alcohol 
consumption, non-alcoholic fatty liver disease (NAFLD) and viral hepati-
tis. NAFLD and alcohol-related liver disease (ARLD) have an overlapping 
pathological spectrum, with fat accumulation in hepatocytes (fatty 
liver disease) being prominent in both. Chronic alcohol consumption22 
and caloric excess23 disrupt lipid handling in the liver, with decreased 
fatty acid oxidation, increased lipogenesis and impaired triglyceride 
export resulting in the accumulation of both storage and toxic lipid 
species in hepatocytes24,25.

Extended cohort of patients with NAFLD and ARLD
We previously sequenced 482 whole genomes from healthy and dis-
eased liver13, but lacked statistical power for definitive identification of 

genes under selective pressure. We extended this previous study with 
an additional 1,108 whole-genome sequences from 20 liver samples, 
focusing predominantly on NAFLD. We used a hierarchical experimental 
design: for each sample, comprising around 1 cm3 of liver tissue, we 
sequenced 21–52 separate microdissections (Fig. 1a, Supplementary 
Note 1). In two patients with NAFLD, we took samples from all eight Cou-
inaud anatomical segments of their explanted livers, and sequenced 
22–28 microdissections from each segment.

When combined with the previous study, the expanded dataset 
comprised 1,590 genomes from 34 liver samples, including 5 healthy 
liver controls, 10 samples from patients with ARLD and 19 samples 
from patients with NAFLD (Supplementary Table 1). Overall, nine 
samples were from patients who had a synchronous hepatocellular 
carcinoma (HCC) and underlying cirrhosis; a further eight samples 
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had HCC without underlying cirrhosis. All samples were reviewed by 
a specialist hepatopathologist. Microdissections were sequenced to 
an average depth of 31× (Supplementary Table 2).

Driver mutations
Across all protein-coding genes, we identified six genes with a signifi-
cant recurrence of mutations (q < 0.05) after correction for multiple 
hypothesis testing: FOXO1 (q < 2 × 10−16), CIDEB (q < 2 × 10−16), ACVR2A 
(q = 7 × 10−9), ALB (q = 8 × 10−10), GPAM (q = 1 × 10−5) and TNRC6B (q = 0.04; 
Supplementary Tables 3, 4).

One of these genes, ACVR2A, a receptor for activin A in the TGF-β 
superfamily, is mutated in 5–10% of HCCs1–6,8. We observed thirteen 
missense mutations, two nonsense and one splice-site indel in ACVR2A 
(q = 7 × 10−9), as well as four large-scale structural variants (Extended 
Data Fig. 1, Supplementary Tables 4, 5).

Four genes identified as significant have not, to our knowledge, previ-
ously been reported in HCC, of which FOXO1, CIDEB and GPAM are dis-
cussed further below. TNRC6B encodes a protein involved in microRNA 
processing26. We observed three nonsense, two essential splice site 
and one large in-frame deletion as well as three missense mutations 
in TNRC6B (q = 0.04) (Extended Data Fig. 2a). This predominance of 
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Fig. 1 | Convergent FOXO1 mutations in chronic liver disease. a, Overview of 
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protein-truncating variants suggests that inactivation of the gene con-
fers a positive selective advantage on hepatocytes. Notably, one patient 
with NAFLD had five different mutations in TNRC6B, consistent with 
convergent evolution in independent hepatocyte clones.

We also screened for non-coding driver mutations27 (Supplementary 
Table 4). A lncRNA, NEAT1, showed a significant excess of mutations 
compared to the background expectation (q < 1 × 10−10) (Extended Data 
Fig. 2b). This gene is recurrently mutated in a range of human cancers, 
including HCC7, but this is believed to be due to a localized hypermuta-
tion process rather than positive selection27.

FOXO1 hotspot mutations
We found a highly significant excess of missense mutations in FOXO1 
(q < 2 × 10−16), which encodes the major transcription factor in insulin 
signalling. Overall, we identified 26 clones that had acquired independ-
ent FOXO1 mutations; these were distributed among 45 individual 
microdissections from 8 patients. Of these, 24 clones contained an 
identical base change that is predicted to generate an S22W amino 
acid substitution (Fig. 1b). The other two mutations would generate an 
R21L substitution and an S22* nonsense mutation. The latter was in a 
single microdissection from a healthy control liver sample, and we are 
uncertain of its biological significance—we only saw S22W mutations in 
patients with ARLD or NAFLD. A structural variant within the first intron 
of FOXO1 was observed in a patient with NAFLD (Extended Data Fig. 3).

Of the seven patients with FOXO1 S22W mutations, six had clear 
evidence for multiple independent acquisitions of the mutation in 
different clones; that is, convergent evolution (Extended Data Fig. 4, 
Supplementary Note 2). In the two patients in whom we sampled all 
eight anatomical segments of the liver, we found FOXO1 S22W muta-
tions in three different segments in one patient and in four segments 
in the other. Furthermore, even within a single segment, there were 
multiple, independently acquired FOXO1 mutations, such that one 
of these two patients had nine independent clones with FOXO1 S22W 
among regions sampled. Of the patients in whom we analysed samples 
from a single segment, one had five independent acquisitions of FOXO1 
missense mutations within around 1 cm3; a further patient had three 
separate occurrences; and two patients had two separate acquisitions 
(Fig. 1c, d, Extended Data Figs. 4, 5).

Mutations impair the nuclear export of FOXO1
FOXO1 is the key transcription factor downstream of insulin signalling. 
In the fasting state, without insulin, FOXO1 is active in the nucleus of 
hepatocytes, and upregulates the expression of genes in the gluco-
neogenesis, glycogenolysis and lipolysis pathways. Upon activation of 
insulin signalling, activated AKT phosphorylates FOXO1, with threo-
nine 24 (Thr24) being one of three known phosphorylation targets. 
Thr24 phosphorylation triggers 14-3-3 protein binding and the export 
of FOXO1 to the cytoplasm28, where it undergoes ubiquitination and 
degradation. The Ser22 residue is itself phosphorylated by AMPK, 
inhibiting the export of FOXO129. We hypothesized that substitution 
of a bulky tryptophan residue for Ser22 would similarly inhibit the 
nuclear export of FOXO1.

We transduced the HepG2 (Fig. 2a, b), Hep3B and PLC/PRF/5 (Extended 
Data Figs. 6, 7) HCC cell lines with retroviral constructs of FOXO1 con-
taining wild-type, R21L or S22W mutations, fused to C-terminal green 
fluorescent protein (GFP). Under serum starvation conditions, both 
wild-type and mutant FOXO1–GFP were predominantly localized to 
the nucleus, as expected without insulin. With the addition of insu-
lin or serum, wild-type FOXO1–GFP underwent rapid nuclear export. 
However, even in the presence of insulin or serum, cells with mutant 
FOXO1–GFP maintained substantial levels of nuclear protein, with high 
nuclear-to-cytoplasmic ratios. An antibody to phosphorylated Thr24 in 
FOXO1 showed no binding to mutant constructs (Extended Data Fig. 6b).

We measured the levels of 105 metabolites in 5 independent repli-
cates for HepG2 cells with wild-type FOXO1–GFP or FOXO1(S22W)–GFP, 
with and without insulin (Fig. 2c). Overall, 43 metabolites were signifi-
cantly different between S22W and wild-type constructs, with many 
intermediates in glycolysis, gluconeogenesis and pentose phosphate 
pathways exhibiting increased levels in cells with mutant FOXO1–GFP. 
RNA sequencing of transduced HepG2 cell lines revealed significant 
upregulation of gene sets that are involved in the cell cycle (q < 0.0001), 
lipid catabolism (q < 0.0001) and FOXO-mediated transcription tar-
gets (q = 0.008); and downregulation of gene sets associated with 
pro-apoptotic processes (q = 0.0004) and canonical glycolysis 
(q < 0.0001) (Extended Data Fig. 8, Supplementary Tables 6, 7).

Mutations in CIDEB
We observed a significant excess of somatic mutations in CIDEB 
(q < 2 × 10−16). CIDEB is the major CIDE-family member that is active in 
hepatocytes, and it regulates the fusion of intracellular lipid droplets, 
mediated by the formation of homodimers between CIDEB proteins17,18. 
Homodimerization occurs through electrostatic contacts between 
positively charged residues on the CIDEB protein from one lipid droplet 
and negatively charged residues on the other.

In addition to 2 nonsense and 1 stop-loss mutation, we observed 
18 missense mutations in CIDEB (Fig. 3a). Missense mutations were 
predominantly located in the two domains implicated in homodi-
merization of CIDE proteins, and many of them either switched a 
charged residue for a neutral one or reversed the charge. Previous 
in vitro mutagenesis studies have shown that altering the charge on key 
conserved residues, including some of those mutated in our patients, 
abrogates homodimerization, preventing the fusion and growth of 
lipid droplets within the cell17,18.

As for FOXO1, mutations in CIDEB were frequently acquired in mul-
tiple independent clones within the liver of one patient. For example, 
in one patient with NAFLD in whom we sampled all 8 Couinaud seg-
ments, we found 14 clones with non-synonymous mutations in CIDEB, 
distributed over 6 of the 8 segments (Fig. 3b, Extended Data Fig. 9).

GPAM mutations
Another significantly mutated gene was GPAM, which encodes mito-
chondrial glycerol-3-phosphate acyltransferase. This enzyme catalyses 
the rate-limiting step in triacylglycerol synthesis—namely, the esterifi-
cation of long chain acyl-CoAs with glycerol-3-phosphate20,21.

We observed 12 missense and 3 protein-truncating mutations in 
GPAM (q = 1 × 10−5), affecting 7 patients (Fig. 3c). We also observed a 
tandem duplication 20 kb upstream of the gene in one microdissection 
(Extended Data Fig. 3b). The clustering of missense mutations in the 
acyltransferase domain, coupled with the nonsense and frameshift 
mutations, suggests that the likely consequence of these mutations 
is impairment of protein function. As we saw for FOXO1 and CIDEB, 
there was evidence for convergent acquisition of somatic mutations 
in GPAM in different clones from the liver sample of the same patient. 
For example, one patient had seven separate events affecting GPAM 
(Fig. 3d), and another patient had two separate events (Extended Data  
Fig. 10).

Properties of clones and patients with drivers
For the two patients in whom we sampled all eight Couinaud segments 
of the liver, we found that driver mutations were replicated across 
multiple regions, suggesting that the findings from a single sample are 
broadly representative of the whole liver. We therefore extrapolated 
the total hepatic mass carrying driver mutations for each significant 
gene (Extended Data Fig. 11a). This revealed, first, that clones with 
driver mutations accounted for hundreds of grams of liver mass in 



4 | Nature | www.nature.com

Article

some patients; and, second, that the distribution of driver mutations 
showed considerable patient-to-patient variation in which genes were 
affected and what level of involvement was observed. Notably, clones 
carrying mutations in FOXO1 (P = 0.005), CIDEB (P = 0.001) and ACVR2A 
(P = 0.001) were larger on average than wild-type clones (Wilcoxon 
test) (Extended Data Fig. 11b), suggesting that the selective advantage 
conferred by the mutations enables preferential expansion.

Despite the moderate cohort size, mutations in FOXO1, CIDEB and 
GPAM were seen across a wide range of patient characteristics: both 
sexes; broad age span; with and without type 2 diabetes; and variable 
severity of histological abnormality (Extended Data Fig. 11c–e, Sup-
plementary Code). This suggests that the results from our cohort will 
generalize across patients with ARLD and patients with NAFLD.

Comparison with HCC
We accessed mutation calls for 1,670 HCCs recorded in the International 
Cancer Genome Consortium (ICGC) data portal. The three metabolism 
genes so frequently mutated in our cohort, FOXO1, CIDEB and GPAM, 
were not significantly mutated in HCC (q = 1.0, 1.0 and 0.6, respectively) 
(Supplementary Tables 7–9). FOXO1 S22W mutations were found in 
only 3 of 1,670 HCCs (0.18%; 95% confidence interval = 0.05–0.6%)—a 
significantly lower fraction than the 24 clones carrying this mutation 
in our cohort (P = 2 × 10−5, Fisher’s exact test). TNRC6B exhibited a sig-
nificant excess of protein-truncating mutations in HCC (24 variants; 
q = 0.0001), suggesting that it is a tumour suppressor gene in malignant 
hepatocytes.
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Other genomic analyses
The majority of HCCs have mutations that activate TERT, the telom-
erase gene2,4,7, but we observed only one mutation affecting the TERT 
promoter in non-cancerous liver. To assess telomere dynamics in our 
samples, we estimated telomere lengths for each microdissection. We 
observed considerable between- and within-individual variation in 
telomere lengths across the cohort, with shorter telomeres in NAFLD 
and ARLD compared to normal liver (Fig. 4a, Extended Data Fig. 12, Sup-
plementary Code). This suggests that ARLD and NAFLD are associated 
with a substantial attrition of telomeres, outweighing the relatively 
minor shortening of telomere lengths with age. Furthermore, telomeres 
became progressively shorter as the size of a clone increased, reflect-
ing the extra cell divisions associated with hepatocyte regeneration.

We also evaluated mutational signatures in the extended cohort, 
extracting a signature not previously seen in HCC2,3. This signature 
was characterized by T>A mutations, especially in a CTG context, with 
transcriptional strand bias suggesting that adenine is the damaged base 
(Fig. 4b, Extended Data Figs. 13, 14). As we found for other exogenous 
signatures13, this new signature showed considerable variability in activ-
ity between nearby clones within the same liver sample, accounting for 
less than 5% of mutations in some nodules, but up to 50% in others, espe-
cially on terminal branches of the phylogeny (Extended Data Fig. 14).

Discussion
We hypothesize that the major mechanism that underlies the selective 
benefit of somatic mutations in FOXO1, CIDEB and GPAM, three master 

regulators of lipid processing and storage, is that these mutations pro-
tect hepatocytes from the lipotoxicity that is common to both NAFLD 
and ARLD22–25. FOXO1 is the critical transcription factor downstream of 
insulin signalling. We have shown in vitro that the hotspot mutations 
impair the insulin-mediated nuclear export of FOXO1, which results 
in insulin resistance, the upregulation of lipid catabolism genes and 
impaired glucose metabolism. CIDEB regulates the fusion of intracel-
lular lipid droplets in hepatocytes17,18 and GPAM is the rate-limiting 
enzyme in the conversion of free fatty acids to storage triglycerides20,21. 
The mutations that we observed in these genes suggest loss-of-function 
effects, meaning that knockout mouse models would mimic the muta-
tions we observe. Knockout mice for Cideb and Gpam have a lower 
hepatic triglyceride content than wild-type controls, and these differ-
ences were considerably more pronounced with high-fat diets19,20, with 
knockout mice specifically protected against diet-induced steatohepa-
titis19. These phenotypes provide in vivo experimental evidence for our 
hypothesis that somatic mutations in these genes protect hepatocytes 
from lipotoxicity.

A major theme emerging from our study is the contrast of 
within-patient convergence with between-patient divergence. Within 
the liver of one patient, we observed many independent hepatocyte 
clones preferentially expanding with mutations in the same metabo-
lism gene—such convergent evolution points to highly specific selec-
tive pressures operative in the liver of a given patient. Across different 
patients, however, there was considerable heterogeneity in both the 
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frequency of driver mutations and which genes they affected. Further 
studies in larger clinical cohorts will be required to understand whether 
this patient-to-patient heterogeneity results from different subtypes of 
disease; whether it informs on disease severity; and whether it predicts 
future risk of cancer or liver failure.
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Methods

Samples
All biological samples were collected with informed consent from 
Addenbrooke’s Hospital, Cambridge, UK, according to procedures 
approved by the East of England Local Research Ethics Committee 
(16/NI/0196 and 15/EE/0351). All participants consented to publica-
tion of research results. The samples were snap-frozen in liquid nitro-
gen and stored at −80 °C in the Human Research Tissue Bank and the 
Department of Surgery of the Cambridge University Hospitals NHS 
Foundation Trust.

Healthy control liver tissues were obtained from patients undergo-
ing hepatic resection of colorectal carcinoma metastases; specimens 
were obtained distant to the metastases and confirmed free of tumour 
at histopathological examination; one patient (PD36718) had under-
gone pre-operative portal vein embolization to the ipsilateral liver, 
but none had received neoadjuvant chemotherapy before resection. 
Background diseased liver tissue was obtained from individuals with 
NAFLD or ARLD, undergoing either hepatic resection for HCC or liver 
transplantation for HCC or liver failure (Supplementary Table 1). All 
patients with NAFLD had typical risk factors for the metabolic syndrome 
and pathological changes compatible with this aetiology: either the 
presence of steatohepatitis, or steatosis and the pattern of fibrosis; 
in addition, before transplantation or resection they had extensive 
clinical investigations excluding other diseases. None had undergone 
pre-operative locoregional therapy, except PD37118, who underwent 
a single treatment with trans-arterial chemoembolization. Clinical 
details, anthropometrics and blood results are detailed in Supple-
mentary Table 1. The PNPLA3 (rs738409) polymorphism genotype was 
derived from the whole-genome sequencing (WGS) data.

One patient had three separate samples taken over a five-year times-
pan, each analysed in this study (PD37918b, PD37915b and PD37910b; 
Supplementary Fig. 1). Two other patients, who were undergoing liver 
transplantation for their disease, had samples taken from all eight 
Couinaud segments of the liver (PD48367a–h and PD48372a–h).

The explant liver histology was reviewed by two specialist liver his-
topathologists (S.E.D. and S.J.A.), blinded to the other results in the 
study. All liver specimens were scored according to the Kleiner system 
on formalin-fixed paraffin-embedded (FFPE) samples away from the 
fresh-frozen block used for the laser-capture microdissection (LCM). 
The Kleiner score, developed for NAFLD, assesses the presence of stea-
tosis, lobular inflammation and hepatocyte ballooning to generate 
a cumulative NAFLD activity score (NAS); artefactual inflammation 
secondary to surgical handling was excluded. We applied this to the 
healthy control and ARLD samples, which, in the absence of a validated 
scoring system for ARLD, allows comparability between all study sam-
ples regardless of disease aetiology. Fibrosis was assessed using both 
the Kleiner30 and the Ishak31 scoring systems. The presence or absence of 
cellular or nodular dysplasia was assessed globally in clinical FFPE sam-
ples (Supplementary Table 1), as well as specifically in the fresh-frozen 
block used for the LCM and sequencing (Supplementary Table 1).

Sample preparation
The protocols for preparing liver tissue sections, LCM and subsequent 
cell lysis, DNA extraction, and WGS were previously described13,32. In 
brief, 20-μm-thick tissue sections (prepared with a Leica cryotome) 
were fixed with 70% ethanol and stained with haematoxylin and eosin 
for subsequent LCM generation using a Leica Microsystems LMD 7000. 
The micro-dissected samples were then lysed using the Arcturus PicoP-
ure DNA Extraction Kit (Thermo Fisher Scientific) following the manu-
facturer’s instructions. DNA libraries for Illumina sequencing were 
prepared using a protocol optimized for low input amounts of DNA 
for submission to paired-end WGS. The resultant reads were mapped 
to the GRCh37d5 human reference genome using the BWA-MEM  
algorithm.

For RNA sequencing, commercially available human hepatocellular 
carcinoma HepG2 cell lines (RRID:CVCL_0027) were transduced with: 
(1) FOXO1R21L-eGFP, (2) FOXO1WT-eGFP, and (3) FOXO1S22W-eGFP. For 
each of these three lines there were starved and insulin-stimulated 
conditions for a total of six conditions. For each of these six conditions 
there were five biological replicates (A to E) for a total of 30 samples. 
RNA was extracted from 30 HepG2 samples using the Qiagen RNeasy 
plus kit according to the manufacturer’s instructions, and sequenced 
on the Illumina NovaSeq platform.

SNV calling
Several steps of the SNV calling workflow that was used in this study 
were previously described. Basic SNV identification used the Cancer 
Variants through Expectation Maximization (CaVEMan) algorithm33 
to call single-base substitution (SBS) variants, with per-patient bulk 
biopsies as matched healthy controls. For the two patients with NAFLD 
that were biopsied from the eight anatomical liver segments, a thyroid 
follicle LCM sample was used as an unmatched control to call mutations. 
Duplicate reads and LCM library preparation-specific artefactual vari-
ants resulting from the incorrect processing of secondary cruciform 
DNA structures were removed with bespoke post-processing filtering. 
The latter filtering step was configured to consider all variants with at 
least two supporting sequenced DNA fragments. In the current study, 
the entropy-metric-based variant-filtering step described in our earlier 
liver paper was replaced with a beta-binomial-based filtering approach 
as described elsewhere34, which operates on the principle that authen-
tic somatic mutations are typically over-dispersed (that is, present in 
only a limited number of genomes in the set of genomes belonging to 
each patient), whereas systematic artefacts or germline variants are 
commonly under-dispersed, making them observable across many, 
if not all, genomes derived from the microdissections from the same 
patient biopsy. In this study, the number of mutation-bearing and total 
reads for each SNV was calculated by enumerating raw allele counts for 
each base (A, C, G, T) per SNV called across all microdissections on a 
patient-specific basis, in which mutations with a dispersion estimate 
of ≥ 0.1 were considered to be likely to be true somatic variants. Manual 
inspection of a subset of final SNV calls using a genome browser was 
performed to ensure validity. A further sanity check involved checking 
that spatially proximate microdissections as captured by histology 
images shared common mutations (that is, within the same vicinity 
in terms of x–y space on the same tissue section, within the same cir-
rhotic nodule, or overlapping x–y positions on tissue sections from 
different z-planes).

Using the hierarchical Dirichlet process for the identification of 
SNV clusters
The nonparametric Bayesian hierarchical Dirichlet process (HDP) 
was implemented to cluster SNVs with similar variant allele fractions 
(VAFs) that were called across multiple microdissections for each 
patient biopsy. Full mathematical and implementation details of the 
clustering algorithm are described in a previous publication13. This 
N-dimensional Dirichlet process (NDP) clustering approach was run 
with 10,000 burn-in iterations, followed by 5,000 posterior Gibbs sam-
pling iterations that were used for clustering. This class of algorithm was 
chosen for the identification of SNV clusters as there is no requirement 
to arbitrarily prespecify the number of clusters to find. Instead, at each 
sampling iteration, there is a defined probability that mutations will 
be allocated to new clusters that did not exist in the previous iteration. 
On the other hand, clusters can also be removed in a future iteration in 
cases in which all member mutations are assigned to other clusters. In 
this way, the number of SNV clusters are permitted to vary throughout 
the sampling chain. To avoid overly complex solutions consisting of a 
large number of clusters, which would increase the chance of creating 
uninformative ones, an upper limit of 100 SNV clusters per patient was 
imposed in this study. A multi-threaded version of the ECR algorithm 
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modified from the label.switching R package35 was used for rapid label 
switching correction. Only SNV clusters comprising a minimum of 50 
unique mutations were kept for downstream analysis. Input to this 
algorithm included per-patient data tables consisting of the coverage 
and counts of each called variant per microdissection. Further details 
are available in the Supplementary Methods.

Inference of phylogenetic trees
The statistical pigeonhole principle, as described previously36, was 
applied to infer phylogenetic clonal relationships between per-patient 
SNV clusters identified by the NDP algorithm, in which each cluster is rep-
resented as a branch of a phylogenetic tree. A given cluster is considered 
to have strong evidence of being nested within another (that is, sub-clonal 
relationship) if the fraction of cells carrying the cluster of mutations is 
lower in all member microdissections relative to the fraction of cells con-
taining another cluster of mutations within the same microdissections, in 
which the sum of their respective mutant cell fractions (CFs) is also >100%. 
Otherwise, if the sum of the pairwise mutant CFs is ≤100%, only weak 
evidence of nesting exists. In cases in which only some microdissections 
have lower CFs of a given SNV cluster relative to another, the clusters are 
interpreted to be independent and not nested within one another. In the 
current study, only clusters with a mutant CF > 0.05 are analysed, and the 
CF of each SNV cluster is calculated as 2 times the median VAF for each 
microdissection, which assumes diploidy.

Problematic SNV clusters containing microdissections that do not 
share any mutations with other member dissections of the same clus-
ters were split up into new independent clusters, and were individually 
reassessed for phylogenetic relatedness with all other clusters within 
the same patient biopsy using the pigeonhole principle.

Identification of mutations under selection
To determine whether any coding mutations were under selection in 
non-tumorous chronic liver disease tissues, the dN/dScv method37 on 
the gene, protein domain, codon and hotspot levels was used to identify 
genes with a higher number of nonsynonymous mutations relative to 
the expected number from the rate of synonymous mutation acquisi-
tion. For this analysis, the unique mutations across the set of all SNV 
clusters were used as input, while mutations with q-values corrected 
for multiple hypothesis testing of < 0.05 were considered to be under 
selection. For the identification of non-coding mutations that may be 
under selection, the NBR algorithm was used27.

Indel calling
As previously described13, indel calling was performed using cgpPin-
del38. A naive Bayes algorithm was used to assign each called indel to 
the SNV clusters identified using the NDP algorithm. As done during 
SNV calling, the beta-binomial over-dispersion filter was applied to 
the raw counts of each called indel across the set of microdissections 
made from each patient biopsy to further filter out artefacts, in which 
variants with an over-dispersion value of ≥ 0.1 and VAF ≥ 0.025 were 
considered to probably be real.

We then developed a gradient-boosted regression tree model to 
accurately separate true from artefactual indels using separate micro-
dissections that were phylogenetically closely related. Full details of our 
model for calling indels are presented in the Supplementary Methods 
and Supplementary Fig. 2.

Structural variant calling
Structural variants including deletions, inversions, tandem duplica-
tions and translocations affecting large genomic segments were called 
using the BRASS (breakpoint via assembly) algorithm39 (https://github.
com/cancerit/BRASS). A three-step process was next used to filter out 
likely artefactual structural variants called by BRASS. First, a custom 
pipeline was developed that identifies and removes artefactual vari-
ants that were introduced by the LCM library preparation protocol, 

based on comparing the structural variant events detected in each 
microdissection with those present in a panel of corresponding normal 
bulk control samples. Second, detailed manual review of all remaining 
structural variants was conducted using a genome browser and variant 
annotations. Finally, similar to the sanity checks that SNVs and indels 
were subjected to, the presence of each structural variant was checked 
among proximate microdissections where possible, where it is expected 
that real variants would be shared by such clusters of dissections.

More complex genomic rearrangement events such as chromothrip-
sis40, in which one or more chromosomes are shattered into as many 
as thousands of pieces that are subsequently fused back together in 
a disordered fashion, were additionally identified through detailed 
manual review of the final set of structural variants.

Calculation of clone areas
The exact spatial positions of 1,202 microdissections were captured in a 
series of microscopy images taken with the LMD7 laser microdissection 
in-built camera. The cartesian coordinates of the outer edge of each 
dissection was extracted using the Canny method as implemented in 
the edge function from the Image Processing MATLAB toolbox. This 
resulted in a set of x–y coordinates per microdissection, which were 
manually annotated to correspond to their respective WGS profiles. 
Next, the SNV clusters were processed individually starting with the 
identification of their respective member microdissections that bear 
mutations assigned to each cluster. For each SNV cluster, the mutant CF 
(that is, 2 × median VAF) was used to adjust each member dissection’s 
x–y coordinates on the tissue section image to more accurately reflect 
genetic clone size. A minimal ellipsoid convex hull was subsequently 
drawn to encompass the adjusted spatial coordinates of each member 
microdissection of a given SNV cluster, before merging the resultant 
polygons into a single entity representing the corresponding clone area. 
Clone area was initially computed in terms of squared pixels, before 
a pixel to micrometre conversion was applied to translate the units to 
squared micrometres. For this, multiplicative conversion factors were 
calculated by first generating images of scale indicators overlaid atop 
high-resolution scanned histology images of tissue sections. This was 
done using the NDP.view2 NanoZoomer Digital Pathology slide scan-
ner image viewing software from Hamamatsu Photonics. The scale 
indicator images were then loaded into the R statistical programming 
environment using the magick image processing package to determine 
the exact number of pixels per millimetre for each tissue section image. 
In this study, only microdissections that contributed mutations with 
VAF ≥ 0.05 were included in the clone size calculation.

Clone size comparison
The clone areas (μm2) were compared between hepatocytes that carried 
driver mutations found in this study to those that did not. Specifically, 
for each driver, clones wild-type for the driver were uniformly and 
randomly sampled from each donor bearing the mutation so that the 
clone areas (weighted by the clone’s number of mutations) between 
the number of mutated clones from each donor could be compared to 
an equivalent number of wild-type clones that were randomly selected 
from each corresponding donor. The comparison of clone areas was 
conducted using the ggstatsplot R package, in which the Bonferroni 
method of multiple hypothesis testing correction to P values was 
applied, and the default Mann–Whitney U test for nonparametric 
pairwise comparisons was used.

Estimation of liver mass containing driver mutations
Several assumptions were made in the calculation of the grams of 
hepatocytes carrying each of the driver mutations identified in this 
study: (1) the majority cell type composing samples are hepatocytes, in 
which driver mutations occurred in diploid genomic regions, and thus 
mutant hepatocyte fraction = 2 × driver allele frequency; (2) each LCM 
microdissection was estimated to comprise 100 to 500 hepatocytes; 



(3) there are 1.16 × 108 hepatocytes per gram of a typical 1.5-kg human 
liver41,42. For each donor in our study, the liver-wide mass (grams) of 
mutated hepatocytes was inferred for each driver mutation by first 
calculating the area (pixels) of all sequenced LCM dissections using 
histology images. As it was estimated that each dissection contained 
between 100 to 500 hepatocytes, a linear fit was performed using the 
R linMap function to map all LCM cut areas within this range, effec-
tively estimating the number of hepatocytes composing each LCM cut. 
The VAF of each driver mutation was then used to infer the fraction of 
mutant-bearing cells in each LCM dissection. Next, the proportion of 
sequenced material per donor containing each driver was calculated by 
summing estimates from all donor-specific sequenced LCM cuts. These 
donor-level estimates were then used to approximate the proportion of 
liver cells carrying each driver on the basis of the estimated number of 
hepatocytes in a typical human liver. These values were then ultimately 
used to estimate the number of grams of liver that contained each driver 
for each donor, assuming that a typical human liver weighs 1.5 kg.

Using HDP for the extraction of mutational signatures
The HDP algorithm as implemented in the HDP R package (https://
github.com/nicolaroberts/hdp), was used to extract mutational signa-
tures composing the set of SBSs called in each of the 1,013 SNV clusters 
identified in healthy control liver and chronic liver disease samples. 
Input to the algorithm consisted of a matrix of mutation counts per 
SNV cluster for each of the mutation categories, which in this case 
consisted of 192 trinucleotide mutational contexts (generated using the 
SigProfilerMatrixGenerator software43) as defined by the six SBS types 
(C>A, C>G, C>T, T>A, T>C, T>G), with each further defined by all possible 
combinations of bases (A, C, T, G) flanking the mutated base (3′ and 5′), 
for the transcribed and un-transcribed strands. A reference catalogue of 
65 previously identified 192-context-based mutational signatures from 
the PanCancer Analysis of Whole Genomes (PCAWG) study was used 
as prior information44. Signatures that had been previously observed 
in hepatocellular carcinoma (HCC) samples (SBS1, SBS3, SBS4, SBS5, 
SBS6, SBS9, SBS12, SBS14, SBS16, SBS17a, SBS17b, SBS18, SBS19, SBS22, 
SBS23, SBS24, SBS26, SBS28, SBS29, SBS30, SBS31, SBS35, SBS37 and 
SBS40) were assigned the default weighting of 1,000 pseudocounts 
during analysis to facilitate the extraction of known liver-relevant signa-
tures. The remaining prior signatures were assigned a lower weighting 
of 100 so as to not rule them out completely in the analysis. By design, 
HDP allows for a degree of de novo discovery of novel mutational sig-
natures that are dissimilar to the set of known signatures supplied 
as prior information. To further guide the extraction of liver-related 
mutational signatures, 314 HCC WGS profiles were also included in 
the analysis. A burn-in of 50,000 iterations was used, followed by 200 
posterior Gibbs sampling iterations that were performed 100 itera-
tions apart, while adjusting the concentration parameter (with shape 
and rate hyperparameters set to 1 and 20 respectively), which controls 
the degree of cluster merging versus splitting (lower versus higher 
values, respectively), a total of five times at each iteration, and starting 
with 70 clusters in which mutations are initially randomly assigned. 
A long burn-in combined with widely spaced collection intervals of 
posterior samples was chosen so as to minimize the chance of violat-
ing the assumption of independent posterior sampling. Furthermore, 
70 initial clusters were used to ensure that the starting distribution 
of mutations was spread over all 65 prior reference signatures plus a 
few additional clusters to promote the extraction of novel mutational 
signatures beyond the set of given priors. At each iteration, each muta-
tion is assigned to a cluster with a high proportion of mutations in 
the same mutation category, sample or parent node. Clusters with 
cosine similarity > 0.9 are merged as per the default settings, whereas 
residual mutations unassigned to the set of extracted signatures due to 
uncertain cluster membership are grouped together to represent the 
percentage of data that is unexplained by the resultant model. A cosine 
similarity of >0.8 (as computed using the philentropy R package45) 

along with manual inspection was used to determine whether any of 
the extracted signatures match any of the known priors, in which a 
slightly lower similarity threshold was used to account for possible 
variations of the reference signatures. A computational deconvolution 
method known as the Perturbation model46 was used to estimate the 
per cent contribution of PCAWG mutational signatures composing 
each of the HDP-extracted signatures as a secondary measure of simi-
larity between known and extracted signatures. Extracted signatures 
that were unique enough such that no close match to any prior can be 
assigned with reasonable certainty were considered novel. For this 
analysis, six independent posterior sampling chains were executed 
concurrently for gauging convergence to stable cluster assignments 
for all mutations, where random seeds of 1-, 2-, 3-, 4-, 5-, and 6-million 
were assigned, respectively. The overall HDP node structure including 
the concentration parameter settings used for signature extraction is 
outlined in Supplementary Fig. 3.

Using SigProfiler for the extraction of mutational signatures
The SigProfilerExtractor python package44 (https://github.com/Alex-
androvLab/SigProfilerExtractor), which is based on the non-negative 
matrix factorization algorithm, served as an alternative means for 
mutational signature identification. The algorithm was configured 
to identify 15 mutational signatures and run with 1,000 iterations. 
Comparison of HDP and SigProfiler extracted 192 trinucleotide context 
signatures was performed by evaluating the cosine similarity metric, 
in which a value of >0.8 was deemed to indicate that a given pair of 
signatures were the same or slightly different versions of each other.

Telomere lengths and heritability
The telomere length (in units of base pairs) of each microdissection 
studied was estimated by analysing the corresponding WGS data for 
telomeric reads (containing TTAGGG and CCCTAA hexamers). To 
accomplish this, Telomerecat v.3.4.0 software47 was used, with length 
correction enabled, while setting the number of simulations to 100 
to constrain uncertainties in the length estimates. The samples from 
PD48367 and PD48372 were unable to have accurate telomere lengths 
estimated, and are therefore excluded from the analysis—we believe that 
this is because they were sequenced on the Illumina NovaSeq platform, 
whereas the other samples were sequencing on the Illumina X10 plat-
form. The different chemistry or base-calling algorithm with NovaSeq 
apparently interferes with telomere length estimation, possibly because 
of mis-mapping of poor-quality reads to the ends of chromosomes. 
Each SNV cluster was assigned the telomere length corresponding to 
the member microdissection with the highest median VAF.

We modelled telomere lengths using Bayesian mixed effects models—
these enabled us to assess the effects of age, clone size and disease on 
telomere lengths, while concurrently controlling for and quantifying 
the correlation arising from phylogenetic relationships among clones 
and within-patient non-independence. The specific algorithm we used 
was the R package, MCMCglmm48, and the code and data for the analysis 
are available in the Supplementary Code. Further details are available 
in the Supplementary Methods.

Cell culture
HepG2, Hep3B and PLC/PRF/5 cells were obtained from ATCC and cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM)/10% foetal calf 
serum (FCS) in a 5% CO2 atmosphere. Cell identity was confirmed by 
STR (short tandem repeat) genotyping. Cells were regularly tested for 
mycoplasma contamination and always found to be negative. Insulin 
(Sigma) stimulation was performed by culturing the cells in serum-free 
DMEM for 16 h before adding insulin at a final concentration of 100 nM.

Vectors
Retroviral vectors (pMSCV-hFOXO1-eGFP:P2A:Puromycin) contain-
ing wild-type FOXO1 (NM_002015.4) (VB190709-1030pwk), FOXO1R21L 
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(VB190709-1028bjm) or FOXO1S22W (VB190709-1032nwa) were pur-
chased from VectorBuilder.

FOXO1–eGFP imaging and high-content analyses
High-content and live-cell analyses of FOXO1–eGFP expressing cells, 
counter-stained with Hoechst 33342 and SPY-555-Actin (Spirochrome), 
were conducted on an Operetta CLS system using a 20× air NA = 0.4 
objective. Images of fixed cells were analysed using Harmony soft-
ware (PerkinElmer). Any non-cellular material (for example, bright 
areas caused by coverslip edges) were removed; nuclei were seg-
mented from DAPI fluorescence; a 9-pixel-wide cytoplasmic ring 
from around each nucleus was segmented from GFP fluorescence; 
and a background region was sampled from any cell-free areas 120–150 
pixels away from any nucleus. Nuclei were filtered from fragments or 
other non-cell small objects by setting thresholds on nuclear area, 
roundness and width:length ratio. Mean nuclear, cytoplasmic and 
background GFP fluorescence intensities were measured, and from 
these the nuclear:cytoplasmic ratio was calculated for each cell using 
background-subtracted values. The log10 of these values was taken.

For live cells a similar analysis was carried out using CellProfiler. Illumina-
tion correction images were calculated for both GFP and Hoechst channels 
by polynomial fit, and subtracted; nuclei were segmented from the Hoechst 
images; cytoplasm was segmented from the GFP signal, with a 9-pixel-wide 
ring around the nucleus used to restrict the measurement to the perinuclear 
region; mean nuclear and cytoplasmic GFP intensities were measured; and 
the nuclei were tracked through the time series. Nuclear:cytoplasmic ratios 
were calculated and the log10 of these values was taken.

Results from the live cells are displayed as the median ± variance of 
pooled data from four wells, each with 8 fields of view giving 1,000–
2,000 cells analysed per well, a total of 6,000–7,500 cells per condition.

Protein expression by immunoblotting
Immunoblotting, on SDS-PAGE gels was performed as previously 
reported49 using the following antibodies: anti-β-actin (clone: AC15) 
(Sigma, A5441, 1:5,000, RRID:AB_476744); anti-AKT (clone: C73H10) (Cell 
Signaling, 2938, 1:1,000, RRID:AB_915788); anti-phospho-AKT (T308) 
(clone: 244F9) (Cell Signaling, 4056, 1:1,000, RRID:AB_331163); anti-GFP 
(Abcam, ab6556, 1:1,000, RRID:AB_305564); anti-FOXO1 (clone: C29H4) 
(Cell Signaling, 2880, 1:1,000, RRID:AB_2106495); anti-phospho-FOXO1 
(T24) (Cell Signaling, (9464, 1:1,000, RRID:AB_329842). Uncropped 
versions of the blots are shown in Supplementary Fig. 4.

Metabolomics
HepG2 cells expressing either wild-type FOXO1-eGFP or FOXO1S22W-eGFP 
were cultured overnight in serum-free medium before stimulation with 
or without 100 nM insulin for 3 h before collection. Cells were washed in 
PBS, before extraction and lysis in 50% methanol, 30% acetonitrile (both 
Fisher), 20% ultrapure water and 5 μM Valine d8 (internal control, CK 
isotopes) on dry ice. The supernatant from the cellular lysate was then 
stored at −80°C until the stage that metabolomics was to be performed.

A Millipore Sequant ZIC-pHILIC analytical column (5 μm, 
2.1 × 150 mm) with a 2.1 × 20 mm guard column (both 5-mm particle 
size) carrying a binary solvent system was used to perform HILIC chro-
matographic separation of metabolites. For solvent A, we used 20 mM 
ammonium carbonate, 0.05% ammonium hydroxide; and for Solvent 
B, we used acetonitrile. The column oven was maintained at 40 °C and 
the autosampler tray at 4 °C. A flow rate of 0.200 ml min−1 was used for 
the chromatographic gradient, as follows: 0–2 min: 80% B; 2–17 min: 
linear gradient from 80% B to 20% B; 17–17.1 min: linear gradient from 
20% B to 80% B; 17.1–22.5 min: hold at 80% B. We used randomization to 
define the order in which samples were processed; analyses with LC–MS 
were performed blinded to each sample’s identity. The injection volume 
was 5 μl. Pooled samples were generated by equally mixing all of the 
individual samples; these were interspersed at regular intervals among 
the samples to provide quality control for the actual test samples.

Metabolites were quantified with a Thermo Scientific Q Exactive Hybrid 
Quadrupole-Orbitrap Mass spectrometer (HRMS) coupled to a Dionex 
Ultimate 3000 UHPLC. The full-scan, polarity-switching mode was chosen 
for the mass spectrometer. The following conditions were used: spray 
voltage of +4.5 kV/−3.5 kV; heated capillary at 320 °C; the auxiliary gas 
heater at 280 °C; sheath gas flow was 25 units; the auxiliary gas flow was 
15 units; and the sweep gas flow was 0 units. Data from the HRMS were 
acquired in the range of m/z = 70–900; the resolution was set at 70,000, 
the AGC target at 1 × 106 and the maximum injection time at 120 ms. For 
confirming metabolite identities, we used two parameters: (1) precursor 
ion m/z matched to within 5 ppm of the theoretical mass that would be 
predicted from its chemical formula; (2) the retention time of metabolites 
matched the retention time of a purified standard run with the same chro-
matographic method to within 5% variance. We used the Thermo Fisher 
software Tracefinder 5.0 Chromatogram to review and undertake peak 
area integration. To correct variation arising from the analytic process 
that could arise anywhere from sample handling through to instrument 
analysis, we normalized the peak area of each metabolite against the total 
ion count for that sample. These normalized peak areas were then those 
used in the downstream statistical data analysis (as shown in Fig. 2c).

Statistical analysis of metabolomics data was performed using 
linear models with insulin (with or without) and FOXO1 status 
(mutant or wild type) as the predictive variables, and normal-
ized metabolite levels as the dependent variable. Likelihood 
ratio tests were used to generate P values, which were then cor-
rected for multiple hypothesis testing using the Benjamini– 
Hochberg method. A threshold of q < 0.01 was used for significance. 
Code and data for this analysis are available in the Supplementary Code.

Preprocessing of RNA-sequencing data from HepG2 cell lines
HepG2 cell line samples (n = 30) were subjected to two lanes of 
150-base-pair paired-end RNA sequencing using the Illumina HiSeq 
4000 platform. The human reference genome used was hs37d5 from 
the 1000 Genomes Project, with gene annotations based on Ensembl 
release 75 data. Adaptors and low-quality reads were removed using 
Trim Galore (https://github.com/FelixKrueger/TrimGalore) with the 
following parameters: -q 20–fastqc–paired–stringency 1–length 20 -e 
0.1. The Spliced Transcripts Alignment to a Reference (STAR) aligner was 
used to map the raw sequencing reads to the GRCh37 (hg19) human refer-
ence genome. Duplicate reads were marked using Picard. Base quality 
score recalibration was performed using GATK, and substitutions were 
called using HaplotypeCaller. The featureCounts software50 was used 
to summarize gene expression values, and the cpm function from the 
EdgeR R package51 was used to normalize the data into the log counts per 
million scale. All heat maps were generated using the pheatmap R pack-
age (https://cran.r-project.org/web/packages/pheatmap/index.html).

Gene set enrichment analysis
Gene set enrichment analysis (GSEA v.3.0) was performed using a 
pre-ranked list of genes, 2,000 permutations, and all Gene Ontology and 
Reactome associated gene sets that had at most 500 genes ( June_01_2021 
version, downloaded from http://download.baderlab.org/EM_Gen-
esets/). Specifically, for each gene, two linear models were built using 
the lm function in the R statistical programming environment: one that 
included both FOXO1 driver and insulin status (that is, either present 
or absent) as independent variables; and one that only included insulin 
status. The dependent variable in both models is the expression of the 
gene in the model. The likelihood ratio test was then used to calculate 
a P value between each pair of nested models per gene. This P value was 
subsequently multiplied by the sign of the regression coefficient for 
mutation status in the model with the driver for each gene. Finally, the 
gene list was ranked according to this set of P values as follows: -(≈0) 
… −0.05 … −0.99 … 0.99 … 0.05 … ≈0, wherein genes at the bottom of 
the list are expected to be the most associated with the presence of the 
FOXO1 driver, while accounting for the effects of insulin status.



Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
WGS data in the form of BAM files across samples reported in this study 
have been deposited in the European Genome-Phenome Archive (acces-
sion number EGAD00001006255). RNA-sequencing data have been 
deposited in the European Nucleotide Archive (https://www.ebi.ac.uk/
ena/browser/home) with accession number ERP123192.

Code availability
Detailed methods and custom R scripts for the analysis of clinical fea-
tures, telomere lengths and metabolomics data are available in the Sup-
plementary Code. Other packages used in the analysis are listed below: 
R: v.3.5.1, Perl: v.5.3.0, Python: v.3.8.5, MATLAB: v.R2019b, BWA-MEM: 
v.0.7.17 (https://sourceforge.net/projects/bio-bwa/), cgpCaVEMan: 
v.1.11.2/1.13.14/1.15.1 (https://github.com/cancerit/CaVEMan), cgp-
Pindel: v.2.2.2/2.2.4/2.2.5/3.2.0/3.3.0 (https://github.com/cancerit/
cgpPindel), Brass: v.5.4.1/6.0.5/6.1.2/6.2.0/6.3.4 (https://github.com/
cancerit/BRASS), ASCAT NGS: v.4.0.1/ 4.1.2/4.2.1 (https://github.com/
cancerit/ascatNgs), JBrowse: v.1.16.1 (https://jbrowse.org/), cgpVAF: 
v.2.4.0 (https://github.com/cancerit/vafCorrect), alleleCount: v.4.1.0 
(https://github.com/cancerit/alleleCount), SigProfiler: v.1.0.0-GRCh37 
(https://github.com/AlexandrovLab), HDP: v.0.1.5 (https://github.com/
nicolaroberts/hdp), dNdScv: v.0.0.1 (https://github.com/im3sanger/
dndscv), Telomerecat: v.3.4.0 (https://github.com/jhrf/telomerecat), 
STAR: v.2.7.6a (https://github.com/alexdobin/STAR), Picard-tools: 
v.2.20.7 (https://broadinstitute.github.io/picard/), Samtools: v.1.12 
(http://www.htslib.org/), TrimGalore: v.0.6.4 (https://github.com/
FelixKrueger/TrimGalore), GATK: v.4.1.4.1 (https://gatk.broadin-
stitute.org/hc/en-us), GSEA: v.3.0 (https://www.gsea-msigdb.org/
gsea/index.jsp), XGBoost: v.0.82.1 (https://xgboost.readthedocs.io/
en/latest/), NDP.view2 (https://www.hamamatsu.com/eu/en/prod-
uct/type/U12388-01/index.html), label.switching: v.1.8 (https://
cran.r-project.org/web/packages/label.switching/index.html), 
philentropy: v.0.3.0 (https://cran.r-project.org/web/packages/phi-
lentropy/index.html), MCMCglmm: v.2.29 (https://cran.r-project.
org/web/packages/MCMCglmm/index.html), Magick: v.2.0 (https://
cran.r-project.org/web/packages/magick/index.html), Pheatmap: 
v.1.0.12 (https://cran.r-project.org/web/packages/pheatmap/index.
html), Thermo Fisher software Tracefinder: v.5.0 (https://www.
thermofisher.com/uk/en/home/industrial/mass-spectrometry/
liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/
lc-ms-data-acquisition-software/tracefinder-software.html), CellPro-
filer: v.4.0.3 (https://cellprofiler.org/), PerkinElmer Harmony: v.4.9 
(https://www.perkinelmer.com/category/cellular-imaging-software).
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Extended Data Fig. 1 | Mutations in ACVR2A. a, Distribution of somatic 
mutations in ACVR2A according to genomic location. Pie charts show fraction 
of sequencing reads reporting the mutant allele in each microdissection. b, 
Two microdissections in different patients showing structural variants 
generating copy loss of ACVR2A. Black points represent corrected read depth 

along the chromosome. Lines and arcs represent structural variants, coloured 
by the orientation of the joined ends (purple, deletion-type orientation; brown, 
tandem-duplication-type orientation; turquoise, head-to-head inverted; 
green, tail-to-tail inverted).



Extended Data Fig. 2 | Mutations in TNRC6B and NEAT1. a, Distribution of 
somatic mutations in CLCN5 according to genomic location. Pie charts show 
fraction of sequencing reads reporting the mutant allele in each 

microdissection. b, Distribution of somatic mutations in the long non-coding 
RNA, NEAT1, according to genomic location. Pie charts show fraction of 
sequencing reads reporting the mutant allele in each microdissection.
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Extended Data Fig. 3 | Structural variants affecting FOXO1 and GPAM.  
a, A chromothripsis event affecting chromosome 13 in one of the microdissections 
from PD37907, a patient with NAFLD. Black points represent corrected read 
depth along the chromosome. Lines and arcs represent structural variants, 
coloured by the orientation of the joined ends (purple, deletion-type 
orientation; brown, tandem-duplication-type orientation; turquoise, 

head-to-head inverted; green, tail-to-tail inverted). The structural variant that 
breaks FOXO1 is highlighted, and would be predicted to break the gene within 
the first intron, preserving the first coding exon but deleting the remaining 
coding exons. b, A tandem duplication upstream of GPAM in a microdissection 
from PD37110, a patient with ARLD. GPAM is left intact, but the tandem 
duplication starts 20kb upstream of the gene.



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Multiple independent acquisitions of FOXO1 
mutations in PD37239. The clone map from Fig. 1b is shown, laid onto an  
H&E-stained section. On the left of the figure, raw sequencing data from 
representative samples with and without FOXO1 mutations are shown,  
with their physical locations on the H&E section shown by the arrows. In the 
sequencing data, reads mapping to the forward strand of the reference genome 
are in pink; the reverse strand in blue. Base calls that do not match the reference 
genome are shown as coloured squares. The locations of the S22W and R21L 
mutations are marked with arrows. The scatterplots arranged around the H&E 

section represent VAF plots of mutations in pairs of samples. The colours of the 
x and y axis titles match the clone map colours of the H&E section. Individual 
mutations called in either sample are shown in orange, according to their VAF, 
with the FOXO1 S22W mutation shown in dark green. In clonally related pairs of 
samples, most of the mutations are shared by both samples, evident as a cloud 
of mutations with non-zero VAF. In clonally unrelated samples, the mutations 
line the x and y axes, with the one exception being the FOXO1 mutation, 
indicating that it is independently acquired in the two clones.



Extended Data Fig. 5 | Further examples of FOXO1 mutations in patients 
with chronic liver disease. a–c, Phylogenetic trees and clone maps are shown 
for PD37234 (a), PD37105 (b) and PD37245 (c). The left panel shows the 
phylogenetic tree, with coloured branches showing independently acquired 
mutations. Solid lines indicate that nesting is in accordance with the 

pigeonhole principle; dashed lines indicate that nesting is in accordance with 
the pigeonhole principle, assuming that hepatocytes represent < 100% of cells. 
The right panel shows the clones from the phylogenetic tree mapped onto an 
H&E-stained photomicrograph of the liver, with FOXO1-mutant clones coloured 
to match the tree.
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Extended Data Fig. 6 | Somatic mutations of FOXO1 impair its 
phosphorylation and nuclear export. a, HepG2 cells were transfected with 
the indicated wild-type or mutant constructs of FOXO1 fused with a C-terminal 
GFP. Cells were counterstained with DAPI to highlight the nucleus, and imaged 
after overnight serum starvation conditions (left) and after 15 min of exposure 
to 100 nM insulin (right). Studies were performed in triplicate. b, HepG2 cells, 

expressing ectopic eGFP-tagged wild-type or mutant FOXO1 constructs as 
indicated and treated for 15 min with vehicle or insulin (100nM), were analysed 
for the indicated proteins by immunoblotting. Molecular weight markers (kDa) 
indicated. Studies were performed in triplicate. Uncropped versions of the 
blots are shown in Supplementary Fig. 4.



Extended Data Fig. 7 | Nuclear–cytoplasmic ratios for wild-type and mutant 
FOXO1-GFP constructs in HCC cell lines. a, b, Wide-field view of Hep3B (a) and 
PLC/PRF5 (b) cells pseudocoloured on a blue-to-red scale by the 

nuclear-cytoplasmic ratio of FOXO1-GFP. Cells were imaged under conditions 
of serum starvation (left), after exposure to insulin 100nM for 15 min (middle) 
or foetal calf serum (FCS) for 15 min (right).
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | RNA sequencing from cell lines transduced with 
either wild-type or mutant FOXO1-GFP constructs. a, Heat map showing 
gene expression levels for genes in the ‘Canonical Glycolysis’ gene set from GO 
(GO:0061621). The order of genes on the x axis is determined by the level of 
significance (and direction of change) and the order of samples on the y axis is 
by condition (FOXO1 status and insulin status). b, Heat map showing gene 
expression levels for genes in the ‘Cell cycle, mitotic’ gene set from Reactome 
(R-HSA-69278). The order of genes on the x axis is determined by the level of 
significance (and direction of change) and the order of samples on the y axis is 

by condition (FOXO1 status and insulin status). c–e, Enrichment plots for the 
‘FOXO-mediated transcription of oxidative stress, metabolic and neuronal 
genes’ gene set of Reactome (9615017) (c); ‘Lipid catabolic process’ gene set of 
GO (0016042) (d); and ‘Apoptotic process’ gene set of GO (0006915) (e). In 
each, the top panel reflects the cumulative enrichment score as the gene set is 
traversed from most up-regulated to most down-regulated in the presence of 
FOXO1-mutant constructs. The bottom panel in each shows the ranking of each 
gene in the gene set across all genes measured.
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Extended Data Fig. 9 | CIDEB mutations in patients with chronic liver 
disease. a, Distribution of somatic mutations in CIDEB. Amino acid residues are 
coloured by type, with observed mutations in chronic liver disease shown 
above the wild-type protein sequence. b, Phylogenetic trees and clone maps 
are shown for one of the Couinaud segments of PD48367 with CIDEB mutations. 
The left panel shows the phylogenetic tree, with coloured branches showing 

independently acquired driver mutations. Solid lines indicate that nesting is in 
accordance with the pigeonhole principle; dashed lines indicate that nesting is 
in accordance with the pigeonhole principle, assuming that hepatocytes 
represent < 100% of cells. The right panel shows the clones from the 
phylogenetic tree mapped onto an H&E-stained photomicrograph of the liver, 
with mutant clones coloured to match the tree.



Extended Data Fig. 10 | GPAM mutations in patients with chronic liver 
disease. a, Distribution of somatic mutations in GPAM according to genomic 
location. Pie charts show fraction of sequencing reads reporting the mutant 
allele in each microdissection. b, Phylogenetic trees and clone maps are shown 
for a biopsy from PD37111 with GPAM mutations. The left panel shows the 
phylogenetic tree, with coloured branches showing independently acquired 

driver mutations. Solid lines indicate that nesting is in accordance with the 
pigeonhole principle; dashed lines indicate that nesting is in accordance with 
the pigeonhole principle, assuming that hepatocytes represent < 100% of cells. 
The right panel shows the clones from the phylogenetic tree mapped onto an 
H&E-stained photomicrograph of the liver, with mutant clones coloured to 
match the tree.
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Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | Properties of clones and patients with driver 
mutations. a, Stacked bar chart showing the estimated cumulative liver mass 
carrying driver mutations, extrapolated from samples analysed in each 
patient. The calculations assume a total liver mass of 1500g for each patient. 
Bars are coloured for each of the 6 recurrently mutated genes identified in the 
study, and patient codes on the x axis are coloured for disease status.  
b, Estimated clone size for the 4 most frequently mutated genes compared to 
wild-type clones. The points are overlaid on box-and-whisker plots where the 
median is marked with a heavy black line and the interquartile range in a thin 
black box. The whiskers denote mark the full range of the data or 25th/75th 
centile plus 1.5x the interquartile range (whichever is smaller). The p values are 
two-sided, derived from Wilcoxon rank-sum tests and have not been corrected 
for multiple hypothesis testing. Sample sizes are n = 25 mutant clones for 
FOXO1; n = 17 mutant clones for CIDEB; n = 15 mutant clones for GPAM; and 
n = 32 mutant clones for ACVR2A. c, Scatter plot showing the distribution of 

ages of patients in the cohort by whether they carried clones with mutations in 
the specified genes or not. The p values are two-sided, derived from Wilcoxon 
rank-sum tests and have not been corrected for multiple hypothesis testing. 
Sample sizes were n = 7 FOXO1 mutant versus n = 22 FOXO1 wild-type; n = 6 
CIDEB mutant versus n = 23 CIDEB wild-type; and n = 7 GPAM mutant versus 
n = 22 GPAM wild-type. d, Stacked bar charts showing the proportion of 
patients with or without type 2 diabetes by whether they carried driver 
mutations in each gene. The p values are two-sided, derived from Fisher’s exact 
tests and have not been corrected for multiple hypothesis testing. Sample sizes 
were as for c. e, Stacked bar charts showing the distribution of the NAFLD 
Activity Score (NAS) by whether they carried driver mutations in each gene, 
with low scores denoting a low degree of histological abnormality. The p values 
are two-sided, derived from chi-squared tests for trend and have not been 
corrected for multiple hypothesis testing. Sample sizes were as for c.
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Extended Data Fig. 12 | Analysis of telomere lengths. a, Scatter plot showing 
the distribution of telomere lengths for samples grouped by disease status, 
and ranked from lowest to highest age within each disease category.  
b, Posterior distributions of the effect size of clone size (per log10(μm2)), age 
(per decade of life) and disease state (NAFLD and ARLD versus normal) on 
telomere lengths. Density plots are shown from the MCMC sampler, coloured 
by decile. Posterior ‘p values’ are calculated from the posterior samples of the 

MCMC chain and are two-sided and not corrected for multiple hypothesis 
testing. c, Telomere lengths layered onto two representative phylogenetic 
trees from patients with ARLD. Branches are coloured on a yellow-to-blue scale 
according to telomere lengths of the sample with the highest VAF assigned to 
that branch. The internal nodes are estimated using maximum likelihood and 
colours are interpolated along each branch.



Extended Data Fig. 13 | Distribution of mutational signatures across the 
phylogenetic trees within the cohort. Estimated proportional contributions 
of each mutational signature to each phylogenetically defined cluster of 

somatic substitutions. Stacked bar plots show proportional contributions of 
signatures in normal controls (top), patients with ARLD (middle), and patients 
with NAFLD (bottom).
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Extended Data Fig. 14 | Distribution of the new T>A signature across three 
samples. a, Signatures for a sample with high rates of the novel signature 
(PD37240). The left panel shows phylogenetic trees with each branch coloured 
by the proportion of mutations in that branch assigned to the different 
mutational signatures. The contribution from the new signature is coloured 
purple. The middle panel shows the overlay of clones onto an H&E-stained liver 
section. Clones are coloured on a grey-to-purple scale according to the 
proportion of mutations attributed to the novel signature. The right panel 

shows observed mutation spectra for representative clones with low (top) or 
high (bottom) burden of the novel signature, laid out as for Fig. 4b. Purple 
arrows indicate parts of the mutation spectrum that are characteristic of the 
new mutational signature. b, c, In one patient with NAFLD, we had three 
samples from 2008 (not shown as the signature was absent), 2011 (b) and 2013 
(c), with the relative contribution of the signature increasing over time. The 
photomicrograph of the H&E section in c was captured after the 
microdissections were excised, hence the white gaps in the tissue.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Image processing from sequencing data using standard Illumina X10 and NovaSeq pipeline

Data analysis Alignment and variant calling performed using Sanger Institute's custom pipeline. Single-nucleotide substitutions were called using the 
CaVEMan (cancer variants through expectation maximization) algorithm (https://github.com/cancerit/CaVEMan). Small insertions and 
deletions were called using the Pindel algorithm (https://github.com/genome/pindel). Rearrangements were called using the BRASS 
(breakpoint via assembly) algorithm (https://github.com/cancerit/BRASS). 
 
List of programs and softwares:  
• R: version 3.5.1 
• Perl: version 5.3.0 
• Python: version 3.8.5 
• MATLAB: version R2019b 
• BWA-MEM: version 0.7.17 (https://sourceforge.net/projects/bio-bwa/) 
• cgpCaVEMan: version 1.11.2/1.13.14/1.15.1 (https://github.com/cancerit/CaVEMan) 
• cgpPindel: version 2.2.2/2.2.4/2.2.5/3.2.0/3.3.0 (https://github.com/cancerit/cgpPindel) 
• Brass: version 5.4.1/6.0.5/6.1.2/6.2.0/6.3.4 (https://github.com/cancerit/BRASS) 
• ASCAT NGS: version 4.0.1/ 4.1.2/4.2.1 (https://github.com/cancerit/ascatNgs) 
• JBrowse: version 1.16.1 (https://jbrowse.org/) 
• cgpVAF: version 2.4.0 (https://github.com/cancerit/vafCorrect)  
• alleleCount: version 4.1.0 (https://github.com/cancerit/alleleCount) 
• SigProfiler: version 1.0.0-GRCh37 (https://github.com/AlexandrovLab) 
• HDP: version 0.1.5 (https://github.com/nicolaroberts/hdp) 
• dNdScv: version 0.0.1 (https://github.com/im3sanger/dndscv) 
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• Telomerecat: version 3.4.0 (https://github.com/jhrf/telomerecat) 
• STAR: version 2.7.6a (https://github.com/alexdobin/STAR) 
• Picard-tools: version 2.20.7 (https://broadinstitute.github.io/picard/) 
• Samtools: version 1.12 (http://www.htslib.org/) 
• TrimGalore: version 0.6.4 (https://github.com/FelixKrueger/TrimGalore) 
• GATK: version 4.1.4.1 (https://gatk.broadinstitute.org/hc/en-us) 
• GSEA: version 3.0 (https://www.gsea-msigdb.org/gsea/index.jsp) 
• XGBoost: version 0.82.1 (https://xgboost.readthedocs.io/en/latest/) 
• NDP.view2 (https://www.hamamatsu.com/eu/en/product/type/U12388-01/index.html) 
• label.switching: version 1.8 (https://cran.r-project.org/web/packages/label.switching/index.html) 
• philentropy: version 0.3.0 (https://cran.r-project.org/web/packages/philentropy/index.html) 
• MCMCglmm: version 2.29 (https://cran.r-project.org/web/packages/MCMCglmm/index.html) 
• Magick: version 2.0 (https://cran.r-project.org/web/packages/magick/index.html) 
• Pheatmap: version 1.0.12 (https://cran.r-project.org/web/packages/pheatmap/index.html) 
• Thermo Fisher software Tracefinder: version 5.0 (https://www.thermofisher.com/uk/en/home/industrial/mass-spectrometry/liquid-
chromatography-mass-spectrometry-lc-ms/lc-ms-software/lc-ms-data-acquisition-software/tracefinder-software.html) 
• CellProfiler: version 4.0.3 (https://cellprofiler.org/) 
• PerkinElmer harmony: version 4.9 (https://www.perkinelmer.com/category/cellular-imaging-software)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Whole genome sequencing data in the form of BAM files across samples reported in this study have been deposited in the European Genome-Phenome Archive 
(Accession number EGAD00001006255; https://www.ebi.ac.uk/ega/home). RNA-sequencing data has been deposited in the European Nucleotide Archive 
(Accession number ERP123192; https://www.ebi.ac.uk/ena/browser/home).

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Across all patients, we identified 1,322,612 unique somatic substitutions, with 1,946,613 called overall – this means that from the 1586 
microdissections, we have the equivalent of ~1078 (68%) unique samples sequenced. From published power calculations for identifying 
cancer genes, this effective sample size equates to a power of ~90% for detecting a significant excess of mutations in 90% of genes mutated in 
2% of clones.

Data exclusions Samples with low mean coverage (<15x) were excluded due to the inaccuracy of mutation catalogues

Replication Experiments for metabolomics and RNA-sequencing on cells transfected with wild-type or mutant FOXO1 constructs were performed with 5 
replicates. Replicates showed consistent results.

Randomization Not applicable  - this is a descriptive study, not an intervention study.

Blinding Not applicable - all dependent variables were computationally generated (mutation counts, signatures etc) and statistical analyses were 
prespecified.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used anti-β-Actin (clone: AC15) (Sigma, A5441, 1:5000, RRID:AB_476744); anti-Akt (clone: C73H10)  (Cell Signaling, 2938, 1:1000, 

RRID:AB_915788); anti-phospho-Akt(T308) (clone: 244F9) (Cell Signaling, 4056, 1:1000, RRID:AB_331163); anti-GFP (Abcam, ab6556, 
1:1000, RRID:AB_305564); anti-FOXO1 (clone: C29H4) (Cell Signaling, 2880, 1:1000, RRID:AB_2106495); anti-phospho-FOXO1 (T24) 
(Cell Signaling, (9464, 1:1000, RRID:AB_329842). 

Validation anti-β-Actin (clone: AC15): Validated by supplier with the following notes - species reactivity: pig, Hirudo medicinalis, bovine, rat, 
canine, feline, human, rabbit, carp, mouse, guinea pig, chicken, sheep; application(s): western blot: 1:5,000-1:10,000 using cultured 
human or chicken fibroblast cell extracts. 
anti-Akt (clone: C73H10): Validated by supplier with the following notes - species reactivity: human, mouse, rat, monkey; 
application(s): suitable for western blot. 
anti-phospho-Akt(T308) (clone: 244F9): Validated by supplier with the following notes - species reactivity: human, mouse, rat, 
monkey; application(s): suitable for western blot. 
anti-GFP (Abcam, ab6556): Validated by supplier with following notes - species reactivity: independent; application(s): suitable for 
Suitable for: IHC-P, Electron Microscopy, ICC, IP, Flow Cyt, IHC-Fr, western blot 
anti-FOXO1 (clone: C29H4): Validated by supplier with the following notes - species reactivity: human, mouse, rat, monkey; 
application(s): suitable for western blot. 
anti-phospho-FOXO1 (T24): Validated by supplier with the following notes - species reactivity: human, mouse, rat, monkey; 
application(s): suitable for western blot.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) The 3 HCC cell lines (HepG2, Hep3B and PLC/PRF/5) were all obtained from ATCC.

Authentication Identification confirmed by SNP genotyping

Mycoplasma contamination All cell lines were confirmed as Mycoplasma negative

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in this study.

Human research participants
Policy information about studies involving human research participants

Population characteristics The dataset comprised 1590 genomes from 34 liver samples, including 5 normal liver controls with no prior neoadjuvant 
therapy, 10 with alcohol-related liver disease (ARLD) and 19 with NAFLD (Supplementary Table S1). All patients with ARLD or 
NAFLD had HCC, liver failure or both and tissues were derived from hepatic resection or transplantation. Overall, 9 samples 
were from patients who had a synchronous HCC and underlying cirrhosis; a further 8 samples had HCC without underlying 
cirrhosis, including 3 hepatic resection samples from one patient over a 5-year timespan (Extended Figure 1). All samples 
underwent central histological review by specialist hepatopathologists, and the histological and clinical features of the 
patients matched those expected for the underlying disease processes (Supplementary Table S1). The average age of 
research subjects was 61 years, and the male:female split was 29:5.

Recruitment Recruited through Addenbrooke's Hospital, Cambridge, UK. All patient gave written informed consent, and were typically of 
advanced stage liver disease. Because explanted liver samples were mostly used, there is a recruitment bias towards high 
severity of disease.

Ethics oversight East of England Research Ethics Committee: 15/EE/0351 and 16/NI/0196 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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