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The progression of chronic liver disease to hepatocellular carcinomais caused by the
acquisition of somatic mutations that affect 20-30 cancer genes' . Burdens of
somatic mutations are higher and clonal expansions larger in chronicliver disease
thanin normalliver®™, which enables positive selection to shape the genomic
landscape’® . Here we analysed somatic mutations from 1,590 genomes across 34
liver samples, including healthy controls, alcohol-related liver disease and
non-alcoholic fatty liver disease. Seven of the 29 patients with liver disease had
mutations in FOXO1, the major transcription factor in insulin signalling. These
mutations affected a single hotspot within the gene, impairing the insulin-mediated
nuclear export of FOXO1. Notably, six of the seven patients with FOXO1***" hotspot
mutations showed convergent evolution, with variants acquired independently by up
to nine distinct hepatocyte clones per patient. CIDEB, which regulates lipid droplet
metabolism in hepatocytes”*?, and GPAM, which produces storage triacylglycerol
from free fatty acids?®%, also had a significant excess of mutations. We again observed
frequent convergent evolution: up to fourteenindependent clones per patient with
CIDEB mutations and up to seven clones per patient with GPAM mutations. Mutations
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inmetabolism genes were distributed across multiple anatomical segments of the
liver, increased clone size and were seenin both alcohol-related liver disease and
non-alcoholic fatty liver disease, but rarely in hepatocellular carcinoma. Master
regulators of metabolic pathways are a frequent target of convergent somatic
mutationinalcohol-related and non-alcoholic fatty liver disease.

The most common causes of chronicliver disease are chronic alcohol
consumption, non-alcoholicfatty liver disease (NAFLD) and viral hepati-
tis. NAFLD and alcohol-related liver disease (ARLD) have an overlapping
pathological spectrum, with fat accumulation in hepatocytes (fatty
liver disease) being prominent in both. Chronic alcohol consumption?
and caloric excess? disrupt lipid handling in the liver, with decreased
fatty acid oxidation, increased lipogenesis and impaired triglyceride
export resulting in the accumulation of both storage and toxic lipid
species in hepatocytes®?.

Extended cohort of patients with NAFLD and ARLD

We previously sequenced 482 whole genomes from healthy and dis-
eased liver® but lacked statistical power for definitive identification of

genes under selective pressure. We extended this previous study with
an additional 1,108 whole-genome sequences from 20 liver samples,
focusing predominantly on NAFLD. We used a hierarchical experimental
design: for each sample, comprising around 1 cm?® of liver tissue, we
sequenced 21-52 separate microdissections (Fig. 1a, Supplementary
Notel).Intwo patients with NAFLD, we took samples fromall eight Cou-
inaud anatomical segments of their explanted livers, and sequenced
22-28 microdissections from each segment.

When combined with the previous study, the expanded dataset
comprised 1,590 genomes from 34 liver samples, including 5 healthy
liver controls, 10 samples from patients with ARLD and 19 samples
from patients with NAFLD (Supplementary Table 1). Overall, nine
samples were from patients who had a synchronous hepatocellular
carcinoma (HCC) and underlying cirrhosis; a further eight samples
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Fig.1| Convergent FOXOI mutationsinchronicliver disease. a, Overview of
the experimental design. b, Somatic mutations in FOXOI grouped by
microdissections from affected patients. Pie charts show the fraction of
sequencing reads reporting the mutantallele in each microdissection.

c,d, FOXO1 mutations in patients PD37239 (c) and PD37918 (d). SNVs,

had HCC without underlying cirrhosis. All samples were reviewed by
aspecialist hepatopathologist. Microdissections were sequenced to
an average depth of 31x (Supplementary Table 2).

Driver mutations

Across all protein-coding genes, we identified six genes with a signifi-
cant recurrence of mutations (g < 0.05) after correction for multiple
hypothesis testing: FOXO1 (g <2 x107), CIDEB (g <2 x107¢), ACVR2A
(g=7%10"°),ALB(qg=8x107%), GPAM (g =1x107)and TNRC6B (g = 0.04;
Supplementary Tables 3, 4).
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One of these genes, ACVR2A, areceptor for activin A in the TGF-f3
superfamily, is mutated in 5-10% of HCCs' %, We observed thirteen
missense mutations, two nonsense and one splice-siteindelin ACVR2A
(g=7x107°), as well as four large-scale structural variants (Extended
DataFig.1, Supplementary Tables 4, 5).

Four genesidentified as significant have not, to our knowledge, previ-
ouslybeenreportedin HCC, of which FOXO1, CIDEB and GPAM are dis-
cussed further below. TNRC6B encodes aproteininvolved in microRNA
processing®. We observed three nonsense, two essential splice site
and one large in-frame deletion as well as three missense mutations
in TNRC6B (g = 0.04) (Extended Data Fig. 2a). This predominance of



protein-truncating variants suggests thatinactivation of the gene con-
fersapositive selective advantage on hepatocytes. Notably, one patient
with NAFLD had five different mutations in TNRC6B, consistent with
convergent evolution in independent hepatocyte clones.

We also screened for non-coding driver mutations” (Supplementary
Table 4). AIncRNA, NEATI, showed a significant excess of mutations
compared to the background expectation (g <1x 10™°) (Extended Data
Fig.2b). Thisgeneisrecurrently mutatedinarange of human cancers,
including HCC’, but this is believed to be due to alocalized hypermuta-
tion process rather than positive selection?.

FOXO1hotspot mutations

We found a highly significant excess of missense mutations in FOXO1
(g <2x107), which encodes the major transcription factor in insulin
signalling. Overall, weidentified 26 clones that had acquired independ-
ent FOXOI mutations; these were distributed among 45 individual
microdissections from 8 patients. Of these, 24 clones contained an
identical base change that is predicted to generate an S22W amino
acid substitution (Fig.1b). The other two mutations would generate an
R21L substitution and an S22* nonsense mutation. The latter wasina
single microdissection from a healthy control liver sample, and we are
uncertain of its biological significance—we only saw S22W mutationsin
patients with ARLD or NAFLD. A structural variant within the firstintron
of FOXOI was observed inapatient with NAFLD (Extended Data Fig. 3).

Of the seven patients with FOX0O1 S22W mutations, six had clear
evidence for multiple independent acquisitions of the mutation in
different clones; that is, convergent evolution (Extended Data Fig. 4,
Supplementary Note 2). In the two patients in whom we sampled all
eight anatomical segments of the liver, we found FOXO1 S22W muta-
tions in three different segments in one patient and in four segments
in the other. Furthermore, even within a single segment, there were
multiple, independently acquired FOXOI mutations, such that one
of these two patients had nine independent clones with FOXO1 S22W
amongregions sampled. Of the patients in whom we analysed samples
fromasingle segment, one had five independent acquisitions of FOXO1
missense mutations within around 1 cm?; a further patient had three
separate occurrences; and two patients had two separate acquisitions
(Fig.1c, d, Extended DataFigs. 4, 5).

Mutations impair the nuclear export of FOX01

FOXOLlisthe key transcription factor downstream of insulin signalling.
In the fasting state, without insulin, FOXOLl is active in the nucleus of
hepatocytes, and upregulates the expression of genes in the gluco-
neogenesis, glycogenolysis and lipolysis pathways. Upon activation of
insulin signalling, activated AKT phosphorylates FOXO1, with threo-
nine 24 (Thr24) being one of three known phosphorylation targets.
Thr24 phosphorylation triggers 14-3-3 protein binding and the export
of FOXO1 to the cytoplasm?, where it undergoes ubiquitination and
degradation. The Ser22 residue is itself phosphorylated by AMPK,
inhibiting the export of FOXO1%. We hypothesized that substitution
of abulky tryptophan residue for Ser22 would similarly inhibit the
nuclear export of FOXOL.

Wetransduced the HepG2 (Fig. 2a,b), Hep3B and PLC/PRF/5 (Extended
DataFigs. 6,7) HCC cell lines with retroviral constructs of FOXOI con-
taining wild-type, R21L or S22W mutations, fused to C-terminal green
fluorescent protein (GFP). Under serum starvation conditions, both
wild-type and mutant FOXO1-GFP were predominantly localized to
the nucleus, as expected without insulin. With the addition of insu-
lin or serum, wild-type FOXO1-GFP underwent rapid nuclear export.
However, evenin the presence of insulin or serum, cells with mutant
FOXO1-GFP maintained substantial levels of nuclear protein, with high
nuclear-to-cytoplasmicratios. Anantibody to phosphorylated Thr24in
FOXO01showed no binding to mutant constructs (Extended DataFig. 6b).

We measured the levels of 105 metabolites in 5 independent repli-
cates for HepG2 cells with wild-type FOXO1-GFP or FOX0O1(S22W)-GFP,
with and withoutinsulin (Fig. 2c). Overall, 43 metabolites were signifi-
cantly different between S22W and wild-type constructs, with many
intermediatesin glycolysis, gluconeogenesis and pentose phosphate
pathways exhibiting increased levels in cells with mutant FOXO1-GFP.
RNA sequencing of transduced HepG2 cell lines revealed significant
upregulation of gene sets thatareinvolvedinthe cell cycle (g < 0.0001),
lipid catabolism (g < 0.0001) and FOXO-mediated transcription tar-
gets (g =0.008); and downregulation of gene sets associated with
pro-apoptotic processes (g =0.0004) and canonical glycolysis
(g<0.0001) (Extended DataFig. 8, Supplementary Tables 6, 7).

Mutations in CIDEB

We observed a significant excess of somatic mutations in C/DEB
(g<2x107). CIDEB is the major CIDE-family member that is active in
hepatocytes, and it regulates the fusion of intracellular lipid droplets,
mediated by the formation of homodimers between CIDEB proteins™8,
Homodimerization occurs through electrostatic contacts between
positively charged residues on the CIDEB protein from one lipid droplet
and negatively charged residues on the other.

In addition to 2 nonsense and 1 stop-loss mutation, we observed
18 missense mutations in C/DEB (Fig. 3a). Missense mutations were
predominantly located in the two domains implicated in homodi-
merization of CIDE proteins, and many of them either switched a
charged residue for a neutral one or reversed the charge. Previous
invitro mutagenesis studies have shown that altering the charge onkey
conservedresidues, including some of those mutated in our patients,
abrogates homodimerization, preventing the fusion and growth of
lipid droplets within the cell™8,

As for FOXO1, mutations in CIDEB were frequently acquired in mul-
tipleindependent clones within the liver of one patient. For example,
in one patient with NAFLD in whom we sampled all 8 Couinaud seg-
ments, we found 14 clones with non-synonymous mutationsin CIDEB,
distributed over 6 of the 8 segments (Fig. 3b, Extended Data Fig. 9).

GPAM mutations

Another significantly mutated gene was GPAM, which encodes mito-
chondrial glycerol-3-phosphate acyltransferase. This enzyme catalyses
therate-limiting step intriacylglycerol synthesis—namely, the esterifi-
cation of long chain acyl-CoAs with glycerol-3-phosphate?®?.,

We observed 12 missense and 3 protein-truncating mutations in
GPAM (g =1x107), affecting 7 patients (Fig. 3c). We also observed a
tandem duplication20 kb upstream of the gene in one microdissection
(Extended Data Fig. 3b). The clustering of missense mutations in the
acyltransferase domain, coupled with the nonsense and frameshift
mutations, suggests that the likely consequence of these mutations
isimpairment of protein function. As we saw for FOXO1 and CIDEB,
there was evidence for convergent acquisition of somatic mutations
in GPAM in different clones from the liver sample of the same patient.
For example, one patient had seven separate events affecting GPAM
(Fig.3d), and another patient had two separate events (Extended Data
Fig.10).

Properties of clones and patients with drivers

For the two patients in whomwe sampled all eight Couinaud segments
of the liver, we found that driver mutations were replicated across
multiple regions, suggesting that the findings from asingle sample are
broadly representative of the whole liver. We therefore extrapolated
the total hepatic mass carrying driver mutations for each significant
gene (Extended Data Fig. 11a). This revealed, first, that clones with
driver mutations accounted for hundreds of grams of liver mass in
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Fig.2|Somatic mutations of FOX0O1lead toimpaired nuclear exportand
insulinresistanceinvitro. a, HepG2 cells were transfected with wild-type
(WT) or mutant constructs of FOXO1 fused with C-terminal eGFP. Cells were
counterstained with nuclear (Hoechst 33342) and cytoplasmic (SPY-555-Actin)
markers. Scalebars, 10 um. b, Quantification of eGFP localization, expressed as
log nuclear/cytoplasmic fluorescence ratio (mean + s.e.m.) during live-cell
imaging (wild-type FOXOl cells, n = 6,186 cells per time point; and FOXO152"

some patients; and, second, that the distribution of driver mutations
showed considerable patient-to-patient variationin which genes were
affected and what level of involvement was observed. Notably, clones
carrying mutations in FOXOI (P = 0.005), CIDEB (P=0.001) and ACVR2A
(P=0.001) were larger on average than wild-type clones (Wilcoxon
test) (Extended DataFig.11b), suggesting that the selective advantage
conferred by the mutations enables preferential expansion.

Despite the moderate cohort size, mutations in FOXO1, CIDEB and
GPAM were seen across a wide range of patient characteristics: both
sexes; broad age span; with and without type 2 diabetes; and variable
severity of histological abnormality (Extended Data Fig. 11c-e, Sup-
plementary Code). This suggests that the results from our cohort will
generalize across patients with ARLD and patients with NAFLD.
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cells,n=7,172cells per time point). The s.e.m. values were very low, and hence
error bars are not easily visible. ¢, Heat map showing concentrations of
metabolites (rows) measured in HepG2 cells (expressing wild-type or S22W
FOXOI construct; with or withoutinsulin) in Sreplicates each (columns).
Metabolites that were significant after correction for multiple hypothesis
testing (g < 0.01) are shown, with intermediates from pentose phosphate and
glycolysis-gluconeogenesis pathwaysin pink.

Comparisonwith HCC

We accessed mutation calls for 1,670 HCCs recorded in the International
Cancer Genome Consortium (ICGC) data portal. The three metabolism
genes so frequently mutated in our cohort, FOXO1, CIDEB and GPAM,
were not significantly mutated inHCC (¢ =1.0,1.0 and 0.6, respectively)
(Supplementary Tables 7-9). FOXO1 S22W mutations were found in
only 3 0f 1,670 HCCs (0.18%; 95% confidence interval = 0.05-0.6%)—a
significantly lower fraction than the 24 clones carrying this mutation
inour cohort (P=2x107, Fisher’s exact test). TNRC6B exhibited a sig-
nificant excess of protein-truncating mutations in HCC (24 variants;
g=0.0001), suggesting thatitisatumour suppressor gene in malignant
hepatocytes.
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Other genomic analyses
The majority of HCCs have mutations that activate TERT, the telom-
erase gene**’, but we observed only one mutation affecting the TERT
promoter in non-cancerous liver. To assess telomere dynamics in our
samples, we estimated telomere lengths for each microdissection. We
observed considerable between- and within-individual variation in
telomere lengths across the cohort, with shorter telomeres in NAFLD
and ARLD compared to normal liver (Fig. 4a, Extended DataFig.12, Sup-
plementary Code). This suggests that ARLD and NAFLD are associated
with a substantial attrition of telomeres, outweighing the relatively
minor shortening of telomere lengths with age. Furthermore, telomeres
became progressively shorter as the size of a clone increased, reflect-
ing the extra cell divisions associated with hepatocyte regeneration.
We also evaluated mutational signatures in the extended cohort,
extracting a signature not previously seen in HCC??. This signature
was characterized by T>A mutations, especially ina CTG context, with
transcriptional strand bias suggesting that adenine is the damaged base
(Fig. 4b, Extended Data Figs. 13, 14). As we found for other exogenous
signatures®, this new signature showed considerable variability in activ-
itybetween nearby clones within the same liver sample, accounting for
less than 5% of mutations in some nodules, but up to 50%in others, espe-
cially on terminal branches of the phylogeny (Extended Data Fig. 14).

Discussion

We hypothesize that the major mechanism that underlies the selective
benefit of somatic mutations in FOXOI, CIDEB and GPAM, three master
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Fig.4|Other genomic analyses. a, Distribution of telomere lengths (y axis) by
disease status (xaxis). Each pointrepresents the average telomere length
estimated from genome sequencing data for amicrodissection (n=1,202).
Box-and-whisker plots show the median marked with aheavyblack lineand
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regulators of lipid processing and storage, is that these mutations pro-
tect hepatocytes fromthe lipotoxicity that iscommon to both NAFLD
and ARLD*%, FOXOl is the critical transcription factor downstream of
insulin signalling. We have shown in vitro that the hotspot mutations
impair the insulin-mediated nuclear export of FOXO1, which results
ininsulin resistance, the upregulation of lipid catabolism genes and
impaired glucose metabolism. CIDEB regulates the fusion of intracel-
lular lipid droplets in hepatocytes''® and GPAM is the rate-limiting
enzymeinthe conversion of free fatty acids to storage triglycerides* .
The mutations that we observedin these genes suggest loss-of-function
effects, meaning that knockout mouse models would mimic the muta-
tions we observe. Knockout mice for Cideb and Gpam have a lower
hepatic triglyceride content than wild-type controls, and these differ-
ences were considerably more pronounced with high-fat diets®*, with
knockout mice specifically protected against diet-induced steatohepa-
titis®. These phenotypes provide in vivo experimental evidence for our
hypothesis that somatic mutations in these genes protect hepatocytes
from lipotoxicity.

A major theme emerging from our study is the contrast of
within-patient convergence with between-patient divergence. Within
the liver of one patient, we observed many independent hepatocyte
clones preferentially expanding with mutations in the same metabo-
lism gene—such convergent evolution points to highly specific selec-
tive pressures operative in the liver of a given patient. Across different
patients, however, there was considerable heterogeneity in both the
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frequency of driver mutations and which genes they affected. Further
studiesinlarger clinical cohorts will be required tounderstand whether
this patient-to-patient heterogeneity results from different subtypes of
disease; whether itinforms on disease severity; and whether it predicts
future risk of cancer or liver failure.
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Methods

Samples

All biological samples were collected with informed consent from
Addenbrooke’s Hospital, Cambridge, UK, according to procedures
approved by the East of England Local Research Ethics Committee
(16/N1/0196 and 15/EE/0351). All participants consented to publica-
tion of research results. The samples were snap-frozen in liquid nitro-
gen and stored at -80 °C in the Human Research Tissue Bank and the
Department of Surgery of the Cambridge University Hospitals NHS
Foundation Trust.

Healthy control liver tissues were obtained from patients undergo-
ing hepatic resection of colorectal carcinoma metastases; specimens
were obtained distant to the metastases and confirmed free of tumour
at histopathological examination; one patient (PD36718) had under-
gone pre-operative portal vein embolization to the ipsilateral liver,
but none had received neoadjuvant chemotherapy before resection.
Background diseased liver tissue was obtained from individuals with
NAFLD or ARLD, undergoing either hepatic resection for HCC or liver
transplantation for HCC or liver failure (Supplementary Table 1). All
patients with NAFLD had typicalrisk factors for the metabolic syndrome
and pathological changes compatible with this aetiology: either the
presence of steatohepatitis, or steatosis and the pattern of fibrosis;
in addition, before transplantation or resection they had extensive
clinicalinvestigations excluding other diseases. None had undergone
pre-operative locoregional therapy, except PD37118, who underwent
asingle treatment with trans-arterial chemoembolization. Clinical
details, anthropometrics and blood results are detailed in Supple-
mentary Table1. The PNPLA3 (rs738409) polymorphism genotype was
derived from the whole-genome sequencing (WGS) data.

One patient had three separate samples taken over afive-year times-
pan, each analysed in this study (PD37918b, PD37915b and PD37910b;
Supplementary Fig.1). Two other patients, who were undergoing liver
transplantation for their disease, had samples taken from all eight
Couinaud segments of the liver (PD48367a-h and PD48372a-h).

The explant liver histology was reviewed by two specialist liver his-
topathologists (S.E.D. and S.J.A.), blinded to the other results in the
study. All liver specimens were scored according to the Kleiner system
on formalin-fixed paraffin-embedded (FFPE) samples away from the
fresh-frozen block used for the laser-capture microdissection (LCM).
TheKleiner score, developed for NAFLD, assesses the presence of stea-
tosis, lobular inflammation and hepatocyte ballooning to generate
a cumulative NAFLD activity score (NAS); artefactual inflammation
secondary to surgical handling was excluded. We applied this to the
healthy controland ARLD samples, which, in the absence of a validated
scoring system for ARLD, allows comparability between all study sam-
ples regardless of disease aetiology. Fibrosis was assessed using both
theKleiner*®and theIshak® scoring systems. The presence or absence of
cellular or nodular dysplasiawas assessed globally in clinical FFPE sam-
ples (Supplementary Table1), as well as specifically in the fresh-frozen
block used for the LCM and sequencing (Supplementary Table 1).

Sample preparation

The protocols for preparing liver tissue sections, LCM and subsequent
cell lysis, DNA extraction, and WGS were previously described”®*. In
brief, 20-um-thick tissue sections (prepared with a Leica cryotome)
were fixed with 70% ethanol and stained with haematoxylin and eosin
forsubsequent LCM generation using aLeica Microsystems LMD 7000.
The micro-dissected samples were then lysed using the Arcturus PicoP-
ure DNA ExtractionKit (Thermo Fisher Scientific) following the manu-
facturer’sinstructions. DNA libraries for Illumina sequencing were
prepared using a protocol optimized for low input amounts of DNA
for submission to paired-end WGS. The resultant reads were mapped
to the GRCh37d5 human reference genome using the BWA-MEM
algorithm.

For RNA sequencing, commercially available human hepatocellular
carcinomaHepG2 celllines (RRID:CVCL_0027) were transduced with:
(1) FOXO1”*L-eGFP, (2) FOXO1""-eGFP, and (3) FOXO15**"-eGFP. For
each of these three lines there were starved and insulin-stimulated
conditions for a total of six conditions. For each of these six conditions
there were five biological replicates (A to E) for a total of 30 samples.
RNA was extracted from 30 HepG2 samples using the Qiagen RNeasy
pluskitaccordingto the manufacturer’sinstructions, and sequenced
onthelllumina NovaSeq platform.

SNV calling

Several steps of the SNV calling workflow that was used in this study
were previously described. Basic SNV identification used the Cancer
Variants through Expectation Maximization (CaVEMan) algorithm*
to call single-base substitution (SBS) variants, with per-patient bulk
biopsies as matched healthy controls. For the two patients with NAFLD
that werebiopsied fromthe eight anatomical liver segments, a thyroid
follicle LCM sample was used as an unmatched control to call mutations.
Duplicatereads and LCM library preparation-specific artefactual vari-
ants resulting from the incorrect processing of secondary cruciform
DNA structures were removed with bespoke post-processing filtering.
The latter filtering step was configured to consider all variants with at
least two supporting sequenced DNA fragments. In the current study,
the entropy-metric-based variant-filtering step described in our earlier
liver paper was replaced with abeta-binomial-based filtering approach
asdescribed elsewhere**, which operates on the principle that authen-
tic somatic mutations are typically over-dispersed (that is, present in
only alimited number of genomes in the set of genomes belonging to
each patient), whereas systematic artefacts or germline variants are
commonly under-dispersed, making them observable across many,
if not all, genomes derived from the microdissections from the same
patient biopsy. In this study, the number of mutation-bearing and total
reads for each SNV was calculated by enumerating raw allele counts for
eachbase (A, C, G, T) per SNV called across all microdissections on a
patient-specific basis, in which mutations with a dispersion estimate
of >0.1were considered to be likely to be true somatic variants. Manual
inspection of a subset of final SNV calls using a genome browser was
performed to ensure validity. A further sanity check involved checking
that spatially proximate microdissections as captured by histology
images shared common mutations (that is, within the same vicinity
in terms of x-y space on the same tissue section, within the same cir-
rhotic nodule, or overlapping x-y positions on tissue sections from
different z-planes).

Using the hierarchical Dirichlet process for the identification of
SNV clusters

The nonparametric Bayesian hierarchical Dirichlet process (HDP)
was implemented to cluster SNVs with similar variant allele fractions
(VAFs) that were called across multiple microdissections for each
patient biopsy. Full mathematical and implementation details of the
clustering algorithm are described in a previous publication®. This
N-dimensional Dirichlet process (NDP) clustering approach was run
with10,000 burn-initerations, followed by 5,000 posterior Gibbs sam-
plingiterations that were used for clustering. This class of algorithm was
chosen for the identification of SNV clusters as there is no requirement
to arbitrarily prespecify the number of clusters to find. Instead, at each
sampling iteration, there is a defined probability that mutations will
beallocated to new clusters that did not existin the previousiteration.
Ontheotherhand, clusters canalso be removedinafutureiterationin
casesinwhich allmember mutations are assigned to other clusters. In
thisway, the number of SNV clusters are permitted to vary throughout
the sampling chain. To avoid overly complex solutions consisting of a
large number of clusters, whichwould increase the chance of creating
uninformative ones, an upper limit of 100 SNV clusters per patient was
imposed in this study. A multi-threaded version of the ECR algorithm
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modified from the label.switching R package® was used for rapid label
switching correction. Only SNV clusters comprising aminimum of 50
unique mutations were kept for downstream analysis. Input to this
algorithmincluded per-patient data tables consisting of the coverage
and counts of each called variant per microdissection. Further details
are available in the Supplementary Methods.

Inference of phylogenetic trees

The statistical pigeonhole principle, as described previously*®, was
applied to infer phylogenetic clonal relationships between per-patient
SNV clustersidentified by the NDP algorithm,inwhich eachclusterisrep-
resented asabranchofaphylogenetictree. Agivenclusteris considered
to have strongevidence of being nested within another (thatis, sub-clonal
relationship) if the fraction of cells carrying the cluster of mutations is
lower inallmember microdissections relative to the fraction of cells con-
taininganother cluster of mutations within the same microdissections, in
which the sum of their respective mutant cell fractions (CFs) is also>100%.
Otherwise, if the sum of the pairwise mutant CFs is <100%, only weak
evidence of nesting exists. In casesin which only some microdissections
havelower CFs of agiven SNV cluster relative to another, the clustersare
interpreted tobeindependent and not nested within one another.Inthe
currentstudy, only clusters withamutant CF>0.05are analysed, and the
CF of each SNV cluster is calculated as 2 times the median VAF for each
microdissection, which assumes diploidy.

Problematic SNV clusters containing microdissections that do not
share any mutations with other member dissections of the same clus-
terswere split upintonew independent clusters, and were individually
reassessed for phylogenetic relatedness with all other clusters within
the same patient biopsy using the pigeonhole principle.

Identification of mutations under selection

To determine whether any coding mutations were under selectionin
non-tumorous chronicliver disease tissues, the dN/dScv method® on
the gene, protein domain, codonand hotspot levels was used to identify
genes with a higher number of nonsynonymous mutations relative to
the expected number from the rate of synonymous mutation acquisi-
tion. For this analysis, the unique mutations across the set of all SNV
clusters were used as input, while mutations with g-values corrected
for multiple hypothesis testing of < 0.05 were considered to be under
selection. For the identification of non-coding mutations that may be
under selection, the NBR algorithm was used?.

Indel calling

As previously described®, indel calling was performed using cgpPin-
del®. A naive Bayes algorithm was used to assign each called indel to
the SNV clusters identified using the NDP algorithm. As done during
SNV calling, the beta-binomial over-dispersion filter was applied to
the raw counts of each called indel across the set of microdissections
made from each patient biopsy to further filter out artefacts, in which
variants with an over-dispersion value of > 0.1 and VAF > 0.025 were
considered to probably be real.

We then developed a gradient-boosted regression tree model to
accurately separate true fromartefactual indels using separate micro-
dissections that were phylogenetically closely related. Full details of our
modelfor callingindels are presented in the Supplementary Methods
and Supplementary Fig. 2.

Structural variant calling

Structural variants including deletions, inversions, tandem duplica-
tions and translocations affecting large genomic segments were called
using the BRASS (breakpoint via assembly) algorithm® (https://github.
com/cancerit/BRASS). Athree-step process was next used to filter out
likely artefactual structural variants called by BRASS. First, a custom
pipeline was developed that identifies and removes artefactual vari-
ants that were introduced by the LCM library preparation protocol,

based on comparing the structural variant events detected in each
microdissection with those presentin a panel of corresponding normal
bulk control samples. Second, detailed manual review of all remaining
structural variants was conducted using agenome browser and variant
annotations. Finally, similar to the sanity checks that SNVs and indels
were subjected to, the presence of each structural variant was checked
among proximate microdissections where possible, whereiitis expected
that real variants would be shared by such clusters of dissections.

More complex genomic rearrangement events such as chromothrip-
sis*?, in which one or more chromosomes are shattered into as many
as thousands of pieces that are subsequently fused back together in
adisordered fashion, were additionally identified through detailed
manual review of the final set of structural variants.

Calculation of clone areas

The exact spatial positions 0of 1,202 microdissections were capturedina
series of microscopy images taken with the LMD7 laser microdissection
in-built camera. The cartesian coordinates of the outer edge of each
dissection was extracted using the Canny method as implemented in
the edge function from the Image Processing MATLAB toolbox. This
resulted in a set of x-y coordinates per microdissection, which were
manually annotated to correspond to their respective WGS profiles.
Next, the SNV clusters were processed individually starting with the
identification of their respective member microdissections that bear
mutations assigned to each cluster. For each SNV cluster, the mutant CF
(thatis, 2 x median VAF) was used to adjust each member dissection’s
x-ycoordinates onthetissue sectionimage to more accurately reflect
genetic clone size. A minimal ellipsoid convex hull was subsequently
drawn to encompass the adjusted spatial coordinates of each member
microdissection of a given SNV cluster, before merging the resultant
polygonsintoasingle entity representing the corresponding clone area.
Clone area was initially computed in terms of squared pixels, before
apixel to micrometre conversion was applied to translate the units to
squared micrometres. For this, multiplicative conversion factors were
calculated by first generating images of scale indicators overlaid atop
high-resolution scanned histology images of tissue sections. This was
done using the NDP.view2 NanoZoomer Digital Pathology slide scan-
ner image viewing software from Hamamatsu Photonics. The scale
indicatorimages were thenloaded into the R statistical programming
environment using the magick image processing package to determine
the exact number of pixels per millimetre for each tissue sectionimage.
In this study, only microdissections that contributed mutations with
VAF >0.05were included in the clone size calculation.

Clone size comparison

The clone areas (um?) were compared between hepatocytes that carried
driver mutations found in this study to those that did not. Specifically,
for each driver, clones wild-type for the driver were uniformly and
randomly sampled from each donor bearing the mutation so that the
clone areas (weighted by the clone’s number of mutations) between
the number of mutated clones from each donor could be compared to
anequivalentnumber of wild-type clones that were randomly selected
from each corresponding donor. The comparison of clone areas was
conducted using the ggstatsplot R package, in which the Bonferroni
method of multiple hypothesis testing correction to P values was
applied, and the default Mann-Whitney U test for nonparametric
pairwise comparisons was used.

Estimation of liver mass containing driver mutations

Several assumptions were made in the calculation of the grams of
hepatocytes carrying each of the driver mutations identified in this
study: (1) the majority cell type composing samples are hepatocytes, in
which driver mutations occurred in diploid genomic regions, and thus
mutant hepatocyte fraction =2 x driver allele frequency; (2) eachLCM
microdissection was estimated to comprise 100 to 500 hepatocytes;



(3) there are 1.16 x 10® hepatocytes per gram of a typical 1.5-kg human
liver**2, For each donor in our study, the liver-wide mass (grams) of
mutated hepatocytes was inferred for each driver mutation by first
calculating the area (pixels) of all sequenced LCM dissections using
histology images. As it was estimated that each dissection contained
between 100 to 500 hepatocytes, a linear fit was performed using the
R linMap function to map all LCM cut areas within this range, effec-
tively estimating the number of hepatocytes composing eachLCM cut.
The VAF of each driver mutation was then used to infer the fraction of
mutant-bearing cells in each LCM dissection. Next, the proportion of
sequenced material per donor containing each driver was calculated by
summing estimates fromall donor-specific sequenced LCM cuts. These
donor-level estimates were then used to approximate the proportion of
liver cells carrying each driver on the basis of the estimated number of
hepatocytesinatypical humanliver. These values were then ultimately
used to estimate the number of grams of liver that contained each driver
for each donor, assuming that a typical human liver weighs 1.5 kg.

Using HDP for the extraction of mutational signatures

The HDP algorithm as implemented in the HDP R package (https://
github.com/nicolaroberts/hdp), was used to extract mutational signa-
tures composing the set of SBSs called in each of the 1,013 SNV clusters
identified in healthy control liver and chronic liver disease samples.
Input to the algorithm consisted of a matrix of mutation counts per
SNV cluster for each of the mutation categories, which in this case
consisted of 192 trinucleotide mutational contexts (generated using the
SigProfilerMatrixGenerator software*®) as defined by the six SBS types
(C>A,C>G,C>T, T>A, T>C, T>G), witheach further defined by all possible
combinations of bases (A, C, T, G) flanking the mutated base (3’ and 5’),
for the transcribed and un-transcribed strands. A reference catalogue of
65 previously identified 192-context-based mutational signatures from
the PanCancer Analysis of Whole Genomes (PCAWG) study was used
as prior information**. Signatures that had been previously observed
in hepatocellular carcinoma (HCC) samples (SBS1, SBS3, SBS4, SBS5,
SBS6,SBS9, SBS12, SBS14, SBS16, SBS17a, SBS17b, SBS18, SBS19, SBS22,
SBS23, SBS24, SBS26, SBS28, SBS29, SBS30, SBS31, SBS35, SBS37 and
SBS40) were assigned the default weighting of 1,000 pseudocounts
during analysis to facilitate the extraction of known liver-relevant signa-
tures. Theremaining prior signatures were assigned alower weighting
of100 so as to not rule them out completely in the analysis. By design,
HDP allows for a degree of de novo discovery of novel mutational sig-
natures that are dissimilar to the set of known signatures supplied
as prior information. To further guide the extraction of liver-related
mutational signatures, 314 HCC WGS profiles were also included in
the analysis. Aburn-in of 50,000 iterations was used, followed by 200
posterior Gibbs sampling iterations that were performed 100 itera-
tions apart, while adjusting the concentration parameter (with shape
andrate hyperparameterssettoland 20 respectively), which controls
the degree of cluster merging versus splitting (lower versus higher
values, respectively), atotal of five times at each iteration, and starting
with 70 clusters in which mutations are initially randomly assigned.
Along burn-in combined with widely spaced collection intervals of
posterior samples was chosen so as to minimize the chance of violat-
ing the assumption of independent posterior sampling. Furthermore,
70 initial clusters were used to ensure that the starting distribution
of mutations was spread over all 65 prior reference signatures plus a
few additional clusters to promote the extraction of novel mutational
signatures beyond the set of given priors. At eachiteration, each muta-
tion is assigned to a cluster with a high proportion of mutations in
the same mutation category, sample or parent node. Clusters with
cosine similarity > 0.9 are merged as per the default settings, whereas
residual mutations unassigned to the set of extracted signatures due to
uncertain cluster membership are grouped together to represent the
percentage of datathatis unexplained by the resultant model. A cosine
similarity of >0.8 (as computed using the philentropy R package*)

along with manual inspection was used to determine whether any of
the extracted signatures match any of the known priors, in which a
slightly lower similarity threshold was used to account for possible
variations of the reference signatures. A computational deconvolution
method known as the Perturbation model* was used to estimate the
per cent contribution of PCAWG mutational signatures composing
each ofthe HDP-extracted signatures as asecondary measure of simi-
larity between known and extracted signatures. Extracted signatures
that were unique enough such that no close match to any prior canbe
assigned with reasonable certainty were considered novel. For this
analysis, six independent posterior sampling chains were executed
concurrently for gauging convergence to stable cluster assignments
for all mutations, where random seeds of 1-, 2-, 3-, 4-, 5-, and 6-miillion
were assigned, respectively. The overallHDP node structure including
the concentration parameter settings used for signature extractionis
outlined in Supplementary Fig. 3.

Using SigProfiler for the extraction of mutational signatures
TheSSigProfilerExtractor python package** (https://github.com/Alex-
androvLab/SigProfilerExtractor), which is based on the non-negative
matrix factorization algorithm, served as an alternative means for
mutational signature identification. The algorithm was configured
to identify 15 mutational signatures and run with 1,000 iterations.
Comparison of HDP and SigProfiler extracted 192 trinucleotide context
signatures was performed by evaluating the cosine similarity metric,
in which a value of >0.8 was deemed to indicate that a given pair of
signatures were the same or slightly different versions of each other.

Telomere lengths and heritability

The telomere length (in units of base pairs) of each microdissection
studied was estimated by analysing the corresponding WGS data for
telomeric reads (containing TTAGGG and CCCTAA hexamers). To
accomplish this, Telomerecat v.3.4.0 software*” was used, with length
correction enabled, while setting the number of simulations to 100
to constrain uncertainties in the length estimates. The samples from
PD48367 and PD48372 were unable to have accurate telomere lengths
estimated, and are therefore excluded fromthe analysis—we believe that
thisis because they were sequenced on the lllumina NovaSeq platform,
whereas the other samples were sequencing on the Illumina X10 plat-
form. The different chemistry or base-calling algorithm with NovaSeq
apparently interferes withtelomere length estimation, possibly because
of mis-mapping of poor-quality reads to the ends of chromosomes.
Each SNV cluster was assigned the telomere length corresponding to
the member microdissection with the highest median VAF.

We modelled telomere lengths using Bayesian mixed effects models—
these enabled usto assess the effects of age, clone size and disease on
telomere lengths, while concurrently controlling for and quantifying
the correlation arising from phylogenetic relationships among clones
and within-patient non-independence. The specific algorithm we used
was the R package, MCMCglmm*®, and the code and data for the analysis
areavailableinthe Supplementary Code. Further details are available
inthe Supplementary Methods.

Cell culture

HepG2, Hep3B and PLC/PRF/5 cells were obtained from ATCC and cul-
turedinDulbecco’s modified Eagle’s medium (DMEM)/10% foetal calf
serum (FCS) in a 5% CO, atmosphere. Cell identity was confirmed by
STR (shorttandemrepeat) genotyping. Cells were regularly tested for
mycoplasma contamination and always found to be negative. Insulin
(Sigma) stimulation was performed by culturing the cells in serum-free
DMEM for 16 hbefore addinginsulin at afinal concentration of 100 nM.

Vectors
Retroviral vectors (pMSCV-hFOXO1-eGFP:P2A:Puromycin) contain-
ing wild-type FOXO1(NM_002015.4) (VB190709-1030pwk), FOXO1®*"*
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(VB190709-1028bjm) or FOX013**" (VB190709-1032nwa) were pur-
chased from VectorBuilder.

FOXO01-eGFP imaging and high-content analyses
High-content and live-cell analyses of FOXO1-eGFP expressing cells,
counter-stained with Hoechst 33342 and SPY-555-Actin (Spirochrome),
were conducted on an Operetta CLS system using a 20x air NA = 0.4
objective. Images of fixed cells were analysed using Harmony soft-
ware (PerkinElmer). Any non-cellular material (for example, bright
areas caused by coverslip edges) were removed; nuclei were seg-
mented from DAPI fluorescence; a 9-pixel-wide cytoplasmic ring
from around each nucleus was segmented from GFP fluorescence;
and abackground region was sampled from any cell-free areas 120-150
pixels away from any nucleus. Nuclei were filtered from fragments or
other non-cell small objects by setting thresholds on nuclear area,
roundness and width:length ratio. Mean nuclear, cytoplasmic and
background GFP fluorescence intensities were measured, and from
these the nuclear:cytoplasmic ratio was calculated for each cell using
background-subtracted values. The log,, of these values was taken.

Forlive cellsasimilar analysis was carried out using CellProfiler. lllumina-
tion correctionimages were calculated for both GFP and Hoechst channels
by polynomialfit,and subtracted; nuclei were segmented from the Hoechst
images; cytoplasmwas segmented from the GFP signal, with a 9-pixel-wide
ringaround the nucleus used torestrict the measurement tothe perinuclear
region; meannuclear and cytoplasmic GFPintensities were measured; and
thenucleiweretracked throughthe timeseries. Nuclear:cytoplasmicratios
were calculated and the log;, of these values was taken.

Results from the live cells are displayed as the median + variance of
pooled data from four wells, each with 8 fields of view giving 1,000-
2,000 cellsanalysed per well, atotal of 6,000-7,500 cells per condition.

Protein expression by immunoblotting

Immunoblotting, on SDS-PAGE gels was performed as previously
reported® using the following antibodies: anti-B-actin (clone: AC15)
(Sigma, A5441,1:5,000, RRID:AB_476744); anti-AKT (clone: C73H10) (Cell
Signaling, 2938,1:1,000, RRID:AB_915788); anti-phospho-AKT (T308)
(clone: 244F9) (Cell Signaling, 4056,1:1,000, RRID:AB_331163); anti-GFP
(Abcam, ab6556,1:1,000, RRID:AB_305564); anti-FOXO1 (clone: C29H4)
(CellSignaling, 2880,1:1,000, RRID:AB_2106495); anti-phospho-FOXO1
(T24) (Cell Signaling, (9464,1:1,000, RRID:AB_329842). Uncropped
versions of the blots are shown in Supplementary Fig. 4.

Metabolomics
HepG2 cells expressing either wild-type FOXO1-eGFP or FOXO1°*2"-eGFP
were cultured overnight in serum-free medium before stimulation with
orwithout100 nMinsulin for 3 hbefore collection. Cells were washedin
PBS, before extractionand lysisin 50% methanol, 30% acetonitrile (both
Fisher), 20% ultrapure water and 5 uM Valine d8 (internal control, CK
isotopes) ondryice. The supernatant from the cellular lysate was then
stored at—80°C until the stage that metabolomics was to be performed.
A Millipore Sequant ZIC-pHILIC analytical column (5 pum,
2.1x150 mm) with a 2.1 x 20 mm guard column (both 5-mm particle
size) carrying abinary solvent system was used to perform HILIC chro-
matographic separation of metabolites. For solvent A, we used 20 mM
ammonium carbonate, 0.05% ammonium hydroxide; and for Solvent
B, we used acetonitrile. The column oven was maintained at40 °Cand
theautosamplertray at4 °C. A flow rate of 0.200 ml min~was used for
the chromatographic gradient, as follows: 0-2 min: 80% B; 2-17 min:
linear gradient from 80% B to 20% B;17-17.1 min: linear gradient from
20%Bt080%B;17.1-22.5 min: hold at 80% B. We used randomization to
define the orderinwhich samples were processed; analyses with LC-MS
were performed blinded to eachsample’sidentity. Theinjection volume
was 5 pl. Pooled samples were generated by equally mixing all of the
individual samples; these were interspersed at regular intervalsamong
the samples to provide quality control for the actual test samples.

Metabolites were quantified with a Thermo Scientific Q Exactive Hybrid
Quadrupole-Orbitrap Mass spectrometer (HRMS) coupled to a Dionex
Ultimate 3000 UHPLC. The full-scan, polarity-switchingmode was chosen
for the mass spectrometer. The following conditions were used: spray
voltage of +4.5 kV/-3.5kV; heated capillary at 320 °C; the auxiliary gas
heater at 280 °C; sheath gas flow was 25 units; the auxiliary gas flow was
15 units; and the sweep gas flow was O units. Data from the HRMS were
acquiredintherange of m/z=70-900; the resolution was set at 70,000,
the AGC target at 1x 10° and the maximum injection time at 120 ms. For
confirming metaboliteidentities, we used two parameters: (1) precursor
ion m/zmatched to within 5 ppm of the theoretical mass that would be
predicted fromits chemical formula; (2) the retention time of metabolites
matched the retention time of a purified standard run withthe same chro-
matographic method to within 5% variance. We used the Thermo Fisher
software Tracefinder 5.0 Chromatogram to review and undertake peak
areaintegration. To correct variation arising from the analytic process
that could arise anywhere from sample handling through to instrument
analysis, we normalized the peak area of each metabolite against the total
ion count for thatsample. These normalized peak areas were then those
used in the downstream statistical data analysis (as shownin Fig. 2c).

Statistical analysis of metabolomics data was performed using
linear models with insulin (with or without) and FOXOI status
(mutant or wild type) as the predictive variables, and normal-
ized metabolite levels as the dependent variable. Likelihood
ratio tests were used to generate P values, which were then cor-
rected for multiple hypothesis testing using the Benjamini-
Hochberg method. A threshold of g < 0.01 was used for significance.
Codeand datafor thisanalysis are available in the Supplementary Code.

Preprocessing of RNA-sequencing data from HepG2 cell lines

HepG2 cell line samples (n=30) were subjected to two lanes of
150-base-pair paired-end RNA sequencing using the lllumina HiSeq
4000 platform. The human reference genome used was hs37d5 from
the 1000 Genomes Project, with gene annotations based on Ensembl
release 75 data. Adaptors and low-quality reads were removed using
Trim Galore (https://github.com/FelixKrueger/TrimGalore) with the
following parameters: -q 20-fastqc-paired-stringency 1-length 20 -e
0.1.The Spliced Transcripts Alignment to a Reference (STAR) aligner was
used to map theraw sequencing reads to the GRCh37 (hg19) human refer-
ence genome. Duplicate reads were marked using Picard. Base quality
scorerecalibration was performed using GATK, and substitutions were
called using HaplotypeCaller. The featureCounts software® was used
to summarize gene expression values, and the cpm function from the
EdgeR R package® was used to normalize the datainto the log counts per
millionscale. Allheat maps were generated using the pheatmap R pack-
age (https://cran.r-project.org/web/packages/pheatmap/index.html).

Gene set enrichment analysis

Gene set enrichment analysis (GSEA v.3.0) was performed using a
pre-ranked list of genes, 2,000 permutations, and all Gene Ontology and
Reactome associated gene sets that had at most 500 genes (June_01 2021
version, downloaded from http://download.baderlab.org/EM_Gen-
esets/). Specifically, for each gene, two linear models were built using
thelmfunctioninthe Rstatistical programming environment: one that
included both FOXOI driver and insulin status (that is, either present
orabsent) asindependent variables; and one that only included insulin
status. The dependent variable inboth models is the expression of the
gene in the model. The likelihood ratio test was then used to calculate
aPvalue between each pair of nested models per gene. This Pvalue was
subsequently multiplied by the sign of the regression coefficient for
mutation status in the model with the driver for each gene. Finally, the
gene list was ranked according to this set of P values as follows: -(=0)
...=0.05...-0.99...0.99.... 0.05 ... =0, wherein genes at the bottom of
thelist are expected to be the most associated with the presence of the
FOXO1 driver, while accounting for the effects of insulin status.



Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

WGS datain the form of BAM files across samples reported inthis study
havebeen depositedinthe European Genome-Phenome Archive (acces-
sion number EGAD00001006255). RNA-sequencing data have been
depositedinthe European Nucleotide Archive (https://www.ebi.ac.uk/
ena/browser/home) with accession number ERP123192.
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Extended DataFig. 4 |Multipleindependentacquisitions of FOX01
mutationsin PD37239. The clone map from Fig.1bis shown, laid onto an
H&E-stained section. On theleft of the figure, raw sequencing datafrom
representative samples with and without FOXOI mutations are shown,

with their physical locations on the H&E section shown by the arrows. Inthe
sequencing data, reads mapping to the forward strand of the reference genome
areinpink; thereverse strand in blue. Base calls that do not match the reference
genome areshown as coloured squares. The locations of the S22W and R21L
mutations are marked with arrows. The scatterplots arranged around the H&E

section represent VAF plots of mutations in pairs of samples. The colours of the
xandy axis titles match the clone map colours of the H&E section. Individual
mutations calledin either sample are showninorange, according to their VAF,
with the FOX0O1S22W mutation shownin dark green. In clonally related pairs of
samples, most of the mutations are shared by both samples, evident as acloud
of mutations with non-zero VAF. In clonally unrelated samples, the mutations
linethexandyaxes, with the one exception being the FOXOI mutation,
indicating thatitisindependently acquiredin the two clones.
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mutations. Solid linesindicate that nestingisinaccordance withthe tomatchthetree.
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after overnight serumstarvation conditions (left) and after 15 min of exposure
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indicated and treated for 15 min with vehicle or insulin (100nM), were analysed
for theindicated proteins by immunoblotting. Molecular weight markers (kDa)
indicated. Studies were performed intriplicate. Uncropped versions of the
blots areshowninSupplementary Fig. 4.
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Extended DataFig. 8| RNA sequencing from celllines transduced with
either wild-type or mutant FOXO1-GFP constructs. a, Heat map showing
geneexpression levels for genesin the ‘Canonical Glycolysis’ gene set from GO
(GO:0061621). The order of genes on the x axis is determined by the level of
significance (and direction of change) and the order of samples on they axis s
by condition (FOXOI status and insulin status). b, Heat map showing gene
expression levels for genesin the ‘Cell cycle, mitotic’ gene set from Reactome
(R-HSA-69278). The order of genes on the x axis is determined by the level of
significance (and direction of change) and the order of sampleson they axis s

by condition (FOXOI status and insulin status). c-e, Enrichment plots for the
‘FOXO0-mediated transcription of oxidative stress, metabolic and neuronal
genes’ geneset of Reactome (9615017) (c); ‘Lipid catabolic process’ gene set of
GO (0016042) (d); and ‘Apoptotic process’ gene set of GO (0006915) (e).In
each, the top panel reflects the cumulative enrichment score as the gene setis
traversed from most up-regulated to most down-regulatedin the presence of
FOXO1-mutant constructs. The bottom panelin each shows the ranking of each
geneinthe genesetacrossallgenes measured.
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Extended DataFig. 9 | CIDEBmutations in patients with chronicliver
disease. a, Distribution of somatic mutationsin C/IDEB. Amino acid residues are
coloured by type, with observed mutationsin chronicliver disease shown
above the wild-type proteinsequence. b, Phylogenetic trees and clone maps
areshown for one of the Couinaud segments of PD48367 with C/DEB mutations.
The left panel shows the phylogenetic tree, with coloured branches showing

independently acquired driver mutations. Solid linesindicate that nestingis in
accordance with the pigeonhole principle; dashed lines indicate that nestingis
inaccordance with the pigeonhole principle, assuming that hepatocytes
represent <100% of cells. The right panel shows the clones from the
phylogenetic tree mapped onto an H&E-stained photomicrograph of theliver,
with mutant clones coloured to match thetree.
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Extended DataFig.11|Properties of clones and patients withdriver
mutations. a, Stacked bar chart showing the estimated cumulative liver mass
carrying driver mutations, extrapolated from samples analysed in each
patient. The calculations assume a total liver mass of1500g for each patient.
Barsare coloured for each of the 6 recurrently mutated genes identified in the
study, and patient codes onthe x axis are coloured for disease status.

b, Estimated clone size for the 4 most frequently mutated genes compared to
wild-type clones. The points are overlaid on box-and-whisker plots where the
medianis marked withaheavyblacklineand theinterquartile rangeinathin
black box. The whiskers denote mark the full range of the data or 25"/75%
centile plus1.5x the interquartile range (whichever is smaller). The p values are
two-sided, derived from Wilcoxon rank-sum tests and have not been corrected
for multiple hypothesis testing. Sample sizes are n =25 mutant clones for
FOXOI;n =17 mutant clones for CIDEB; n =15 mutant clones for GPAM; and
n=32mutantclonesfor ACVR2A. c,Scatter plot showing the distribution of

ages of patientsin the cohortby whether they carried clones with mutationsin
thespecified genes or not. The p values are two-sided, derived from Wilcoxon
rank-sumtests and have notbeen corrected for multiple hypothesis testing.
Samplesizes weren =7 FOXOI mutant versus n =22 FOXOI wild-type;n=6
CIDEBmutant versus n =23 CIDEBwild-type; and n =7 GPAM mutant versus
n=22GPAMwild-type.d, Stacked bar charts showing the proportion of
patients with or without type 2 diabetes by whether they carried driver
mutationsineachgene. The p values are two-sided, derived from Fisher’s exact
testsand have notbeen corrected for multiple hypothesis testing. Sample sizes
wereas for c. e, Stacked bar charts showing the distribution of the NAFLD
Activity Score (NAS) by whether they carried driver mutationsineach gene,
withlowscores denoting alow degree of histological abnormality. The p values
aretwo-sided, derived from chi-squared tests for trend and have not been
corrected for multiple hypothesis testing. Sample sizes were as for c.
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Extended DataFig.12| Analysis of telomere lengths. a, Scatter plot showing
thedistribution of telomere lengths for samples grouped by disease status,
andranked from lowest to highest age within each disease category.

b, Posterior distributions of the effect size of clone size (perlog,,(um?), age
(per decade of life) and disease state (NAFLD and ARLD versus normal) on
telomerelengths. Density plots are shown from the MCMC sampler, coloured
by decile. Posterior ‘p values’are calculated from the posterior samples of the

SNVs per diploid genome

MCMC chain and are two-sided and not corrected for multiple hypothesis
testing. ¢, Telomere lengths layered onto two representative phylogenetic
trees from patients with ARLD. Branches are coloured on ayellow-to-blue scale
accordingtotelomerelengths of the sample with the highest VAF assigned to
thatbranch. Theinternalnodes are estimated using maximum likelihood and
colours areinterpolated alongeachbranch.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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Software and code

Policy information about availability of computer code

Data collection Image processing from sequencing data using standard Illumina X10 and NovaSeq pipeline

Data analysis Alignment and variant calling performed using Sanger Institute's custom pipeline. Single-nucleotide substitutions were called using the
CaVEMan (cancer variants through expectation maximization) algorithm (https://github.com/cancerit/CaVEMan). Small insertions and
deletions were called using the Pindel algorithm (https://github.com/genome/pindel). Rearrangements were called using the BRASS
(breakpoint via assembly) algorithm (https://github.com/cancerit/BRASS).

List of programs and softwares:

¢ R:version 3.5.1

e Perl: version 5.3.0

e Python: version 3.8.5

e MATLAB: version R2019b

¢ BWA-MEM: version 0.7.17 (https://sourceforge.net/projects/bio-bwa/)

e cgpCaVEMan: version 1.11.2/1.13.14/1.15.1 (https://github.com/cancerit/CaVEMan)
e cgpPindel: version 2.2.2/2.2.4/2.2.5/3.2.0/3.3.0 (https://github.com/cancerit/cgpPindel)
e Brass: version 5.4.1/6.0.5/6.1.2/6.2.0/6.3.4 (https://github.com/cancerit/BRASS)

e ASCAT NGS: version 4.0.1/ 4.1.2/4.2.1 (https://github.com/cancerit/ascatNgs)

¢ JBrowse: version 1.16.1 (https://jbrowse.org/)

e cgpVAF: version 2.4.0 (https://github.com/cancerit/vafCorrect)

¢ alleleCount: version 4.1.0 (https://github.com/cancerit/alleleCount)

e SigProfiler: version 1.0.0-GRCh37 (https://github.com/AlexandrovLab)

e HDP: version 0.1.5 (https://github.com/nicolaroberts/hdp)

e dNdScv: version 0.0.1 (https://github.com/im3sanger/dndscv)
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e Telomerecat: version 3.4.0 (https://github.com/jhrf/telomerecat)

e STAR: version 2.7.6a (https://github.com/alexdobin/STAR)

e Picard-tools: version 2.20.7 (https://broadinstitute.github.io/picard/)

e Samtools: version 1.12 (http://www.htslib.org/)

e TrimGalore: version 0.6.4 (https://github.com/FelixKrueger/TrimGalore)

e GATK: version 4.1.4.1 (https://gatk.broadinstitute.org/hc/en-us)

e GSEA: version 3.0 (https://www.gsea-msigdb.org/gsea/index.jsp)

¢ XGBoost: version 0.82.1 (https://xgboost.readthedocs.io/en/latest/)

e NDP.view?2 (https://www.hamamatsu.com/eu/en/product/type/U12388-01/index.html)

* label.switching: version 1.8 (https://cran.r-project.org/web/packages/label.switching/index.html)

¢ philentropy: version 0.3.0 (https://cran.r-project.org/web/packages/philentropy/index.html)

* MCMCglmm: version 2.29 (https://cran.r-project.org/web/packages/MCMCglmm/index.html)

e Magick: version 2.0 (https://cran.r-project.org/web/packages/magick/index.html)

¢ Pheatmap: version 1.0.12 (https://cran.r-project.org/web/packages/pheatmap/index.html)

¢ Thermo Fisher software Tracefinder: version 5.0 (https://www.thermofisher.com/uk/en/home/industrial/mass-spectrometry/liquid-
chromatography-mass-spectrometry-lc-ms/Ic-ms-software/lc-ms-data-acquisition-software/tracefinder-software.html)
e CellProfiler: version 4.0.3 (https://cellprofiler.org/)

e PerkinElmer harmony: version 4.9 (https://www.perkinelmer.com/category/cellular-imaging-software)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Whole genome sequencing data in the form of BAM files across samples reported in this study have been deposited in the European Genome-Phenome Archive
(Accession number EGAD00001006255; https://www.ebi.ac.uk/ega/home). RNA-sequencing data has been deposited in the European Nucleotide Archive
(Accession number ERP123192; https://www.ebi.ac.uk/ena/browser/home).

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Across all patients, we identified 1,322,612 unique somatic substitutions, with 1,946,613 called overall — this means that from the 1586
microdissections, we have the equivalent of ~1078 (68%) unique samples sequenced. From published power calculations for identifying
cancer genes, this effective sample size equates to a power of ~90% for detecting a significant excess of mutations in 90% of genes mutated in
2% of clones.

Data exclusions  Samples with low mean coverage (<15x) were excluded due to the inaccuracy of mutation catalogues

Replication Experiments for metabolomics and RNA-sequencing on cells transfected with wild-type or mutant FOXO1 constructs were performed with 5
replicates. Replicates showed consistent results.

Randomization  Not applicable - this is a descriptive study, not an intervention study.

Blinding Not applicable - all dependent variables were computationally generated (mutation counts, signatures etc) and statistical analyses were
prespecified.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
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Antibodies
Antibodies used anti-B-Actin (clone: AC15) (Sigma, A5441, 1:5000, RRID:AB_476744); anti-Akt (clone: C73H10) (Cell Signaling, 2938, 1:1000,
RRID:AB_915788); anti-phospho-Akt(T308) (clone: 244F9) (Cell Signaling, 4056, 1:1000, RRID:AB_331163); anti-GFP (Abcam, ab6556,
1:1000, RRID:AB_305564); anti-FOXO1 (clone: C29H4) (Cell Signaling, 2880, 1:1000, RRID:AB_2106495); anti-phospho-FOXO01 (T24)
(Cell Signaling, (9464, 1:1000, RRID:AB_329842).
Validation anti-B-Actin (clone: AC15): Validated by supplier with the following notes - species reactivity: pig, Hirudo medicinalis, bovine, rat,

canine, feline, human, rabbit, carp, mouse, guinea pig, chicken, sheep; application(s): western blot: 1:5,000-1:10,000 using cultured
human or chicken fibroblast cell extracts.

anti-Akt (clone: C73H10): Validated by supplier with the following notes - species reactivity: human, mouse, rat, monkey;
application(s): suitable for western blot.

anti-phospho-Akt(T308) (clone: 244F9): Validated by supplier with the following notes - species reactivity: human, mouse, rat,
monkey; application(s): suitable for western blot.

anti-GFP (Abcam, ab6556): Validated by supplier with following notes - species reactivity: independent; application(s): suitable for
Suitable for: IHC-P, Electron Microscopy, ICC, IP, Flow Cyt, IHC-Fr, western blot

anti-FOXO1 (clone: C29H4): Validated by supplier with the following notes - species reactivity: human, mouse, rat, monkey;
application(s): suitable for western blot.

anti-phospho-FOXO01 (T24): Validated by supplier with the following notes - species reactivity: human, mouse, rat, monkey;
application(s): suitable for western blot.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) The 3 HCC cell lines (HepG2, Hep3B and PLC/PRF/5) were all obtained from ATCC.
Authentication Identification confirmed by SNP genotyping
Mycoplasma contamination All cell lines were confirmed as Mycoplasma negative

Commonly misidentified lines  no commonly misidentified cell lines were used in this study.
(See ICLAC register)

Human research participants

Policy information about studies involving human research participants

Population characteristics The dataset comprised 1590 genomes from 34 liver samples, including 5 normal liver controls with no prior neoadjuvant
therapy, 10 with alcohol-related liver disease (ARLD) and 19 with NAFLD (Supplementary Table S1). All patients with ARLD or
NAFLD had HCC, liver failure or both and tissues were derived from hepatic resection or transplantation. Overall, 9 samples
were from patients who had a synchronous HCC and underlying cirrhosis; a further 8 samples had HCC without underlying
cirrhosis, including 3 hepatic resection samples from one patient over a 5-year timespan (Extended Figure 1). All samples
underwent central histological review by specialist hepatopathologists, and the histological and clinical features of the
patients matched those expected for the underlying disease processes (Supplementary Table S1). The average age of
research subjects was 61 years, and the male:female split was 29:5.

Recruitment Recruited through Addenbrooke's Hospital, Cambridge, UK. All patient gave written informed consent, and were typically of
advanced stage liver disease. Because explanted liver samples were mostly used, there is a recruitment bias towards high
severity of disease.

Ethics oversight East of England Research Ethics Committee: 15/EE/0351 and 16/NI/0196

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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