Obesity and COVID-19

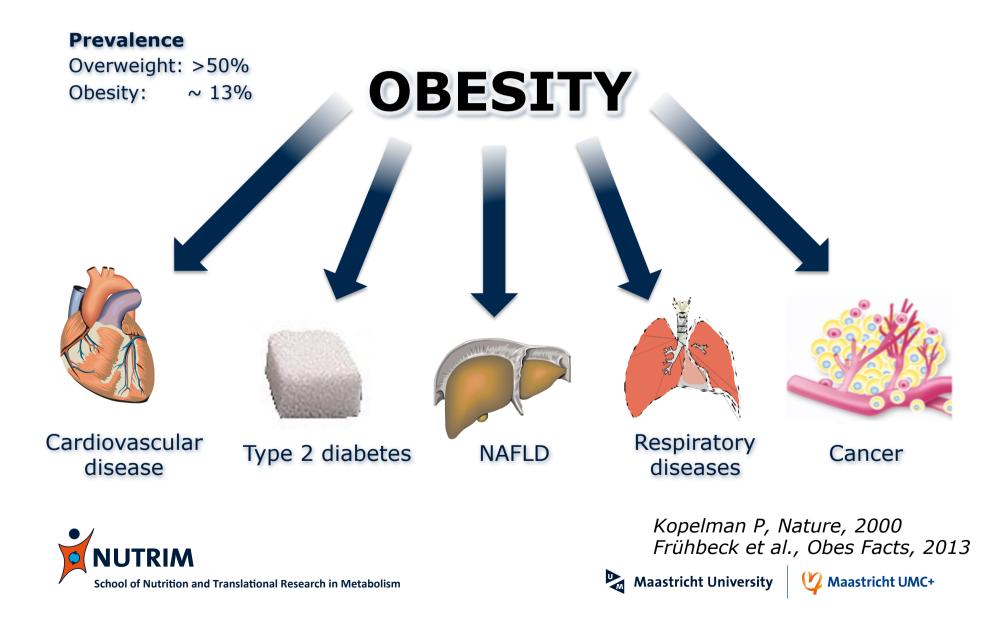
Gijs Goossens

Associate Professor Department of Human Biology Maastricht University Medical Centre⁺ The Netherlands

Webinar Kenniscentrum Diëtisten Overgewicht en Obesitas, 12 oktober 2020

Disclosure

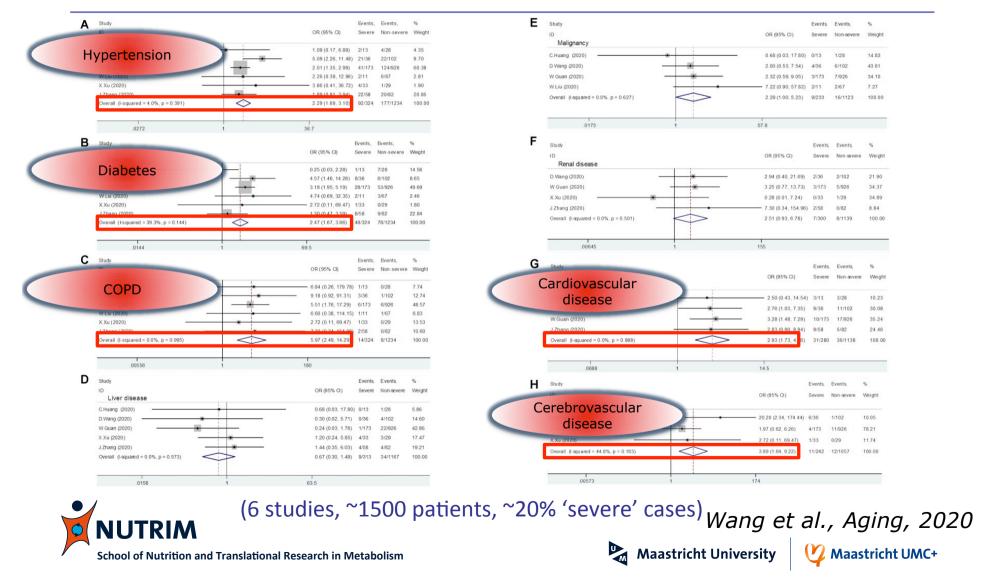
I have no conflict of interest in relation to this presentation


Content

- Obesity and obesity-related complications are major risk factors for COVID-19.
- Why are people living with obesity at increased risk of COVID-19 infection and worse outcomes?
- Importance of more detailed phenotyping, weight gain prevention and continuous management of obesity and related complications during the COVID-19 pandemic.

Obesity: a gateway to many NCDs

- Obesity may also impact communicable diseases (i.e. independent risk factor for 2009 H1N1 influenza A virus ^{1,2}).
- Obesity-related complications are major risk factors for COVID-19. ^{3,4}



¹ Van Kerkhove et al., PloS Med, 2011

- ² Sun et al., Infect Dis, 2016
- ³ Wang et al., Aging, 2020
- ⁴ Goossens et al., Obes Facts, 2020

Obesity-related complications and risk of COVID-19 exacerbation: a meta-analysis

Obesity and COVID-19

- Obesity may also impact communicable diseases (i.e. independent risk factor for 2009 H1N1 influenza A virus ^{1,2}).
- Obesity-related complications are major risk factors for COVID-19. ^{3,4}
- Obesity is an independent determinant of COVID-19 severity and outcomes. 4,5

¹ Van Kerkhove et al., PloS Med, 2011
 ² Sun et al., Infect Dis, 2016
 ³ Wang et al., Aging, 2020
 ⁴ Goossens et al., Obes Facts, 2020
 ⁵ Docherty et al., BMJ, 2020

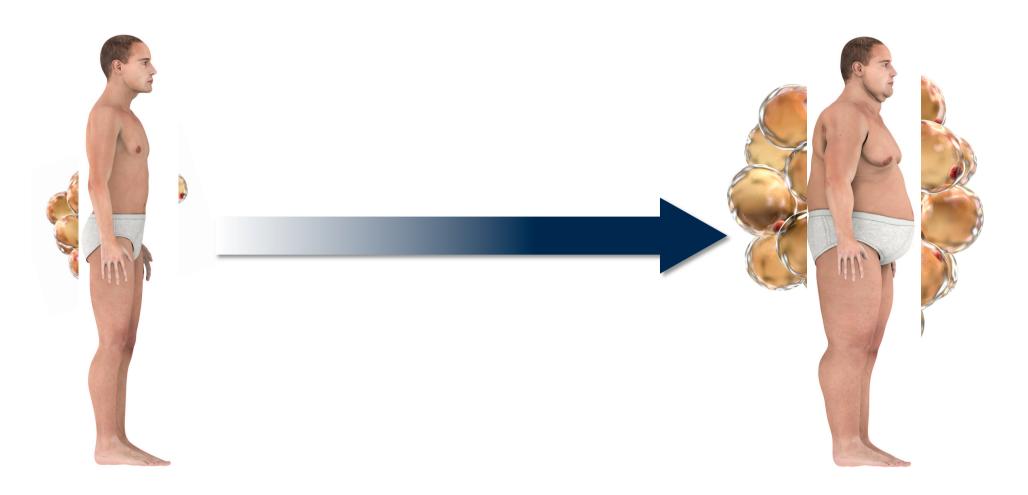
Obesity: An independent determinant of mortality in COVID-19 patients

Prospective observational cohort study >20,000 hospital inpatients with COVID-19 (UK)

				Н	azard ratio (95% Cl))	Hazard ratio (95% CI)	P value
	Age on admission (years)	<50		•				
		50-59					2.63 (2.06 to 3.35)	<0.001
Sarcopenio	c obesity?	60-69				-	4.99 (3.99 to 6.25)	<0.001
<i>`hidden'</i> o	obesity:	70-79					8.51 (6.85 to 10.57)	<0.001
low muscle mass	s, high fat mass	≥80					11.09 (8.93 to 13.77)	<0.001
	Sex at birth	Female	•				0.81 (0.75 to 0.86)	<0.001
	Chronic cardiac disease	Yes		•••			1.16 (1.08 to 1.24)	<0.001
	Chronic pulmonary disease	Yes		-+-			1.17 (1.09 to 1.27)	<0.001
	Chronic kidney disease	Yes		-+-			1.28 (1.18 to 1.39)	<0.001
	Diabetes	Yes		* -			1.06 (0.99 to 1.14)	0.087
	Obesity	Yes					1.33 (1.19 to 1.49)	<0.001
	Chronic neurological disorder	Yes		-+-			1.17 (1.06 to 1.29)	0.001
	Dementia	Yes		-+-			1.40 (1.28 to 1.52)	<0.001
	Malignancy	Yes		-+-			1.13 (1.02 to 1.24)	0.017
	Moderate/severe liver disease	e Yes			2 5	10	1.51 (1.21 to 1.88)	<0.001

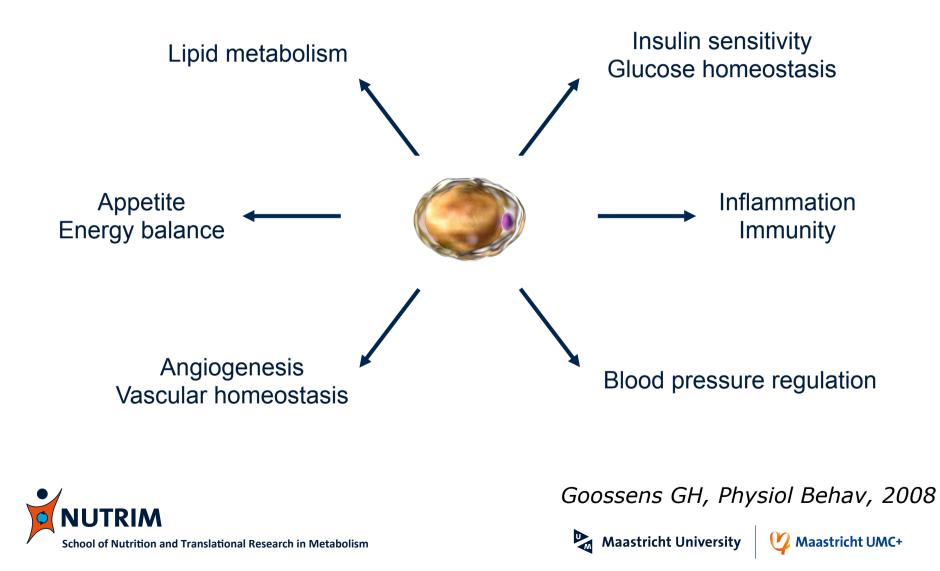
Increasing age, male sex, and chronic comorbidity, including obesity, were independent risk factors for mortality

Docherty et al., BMJ, 2020

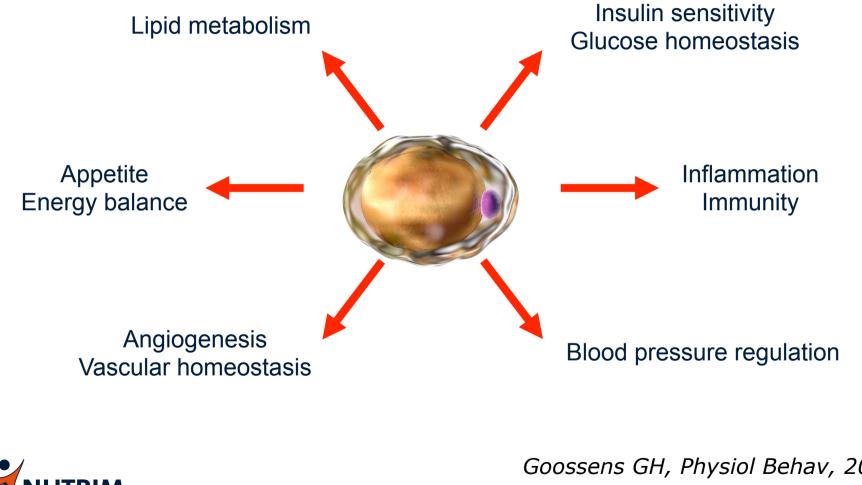

🙎 Maastricht UMC+

Why are people living with obesity at increased risk of COVID-19 infection and worse outcomes?

Fat cell enlargement in obesity



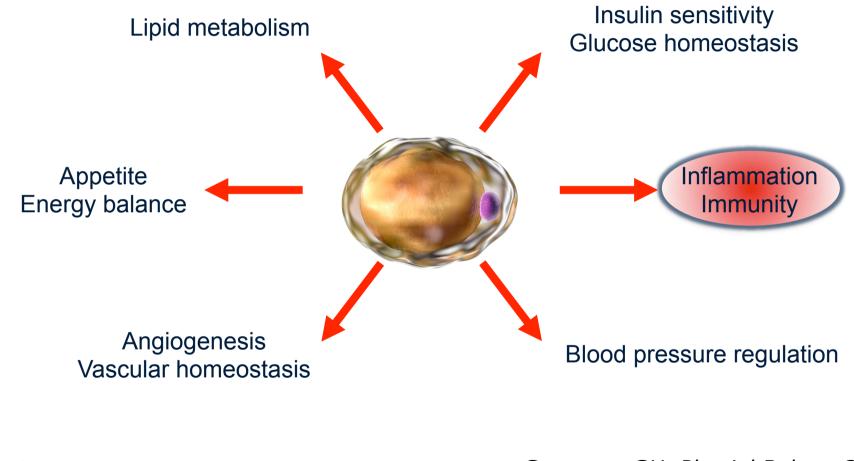
Goossens GH, Obes Facts, 2017


Maastricht University

V Maastricht UMC+

Adipose tissue is a highly dynamic, metabolically active, endocrine organ

Impaired endocrine function of adipose tissue in people living with obesity

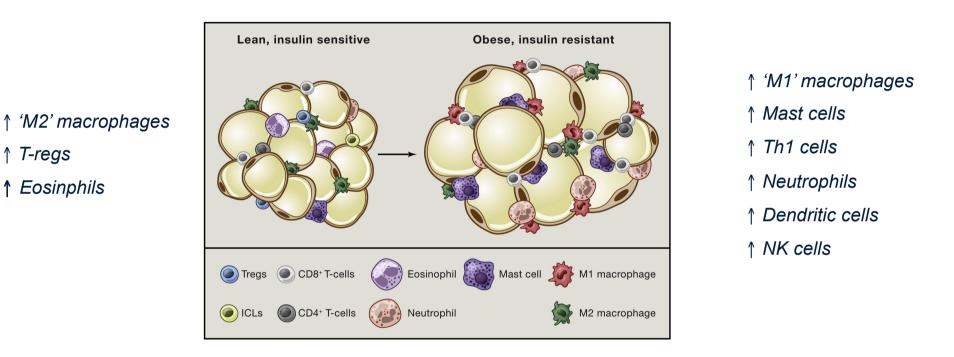


School of Nutrition and Translational Research in Metabolism

Goossens GH, Physiol Behav, 2008

Maastricht UMC+

Impaired endocrine function of adipose tissue in people living with obesity



Goossens GH, Physiol Behav, 2008

Dynamic changes in immune cell populations in WAT during the development of obesity

A proinflammatory adipose tissue phenotype in obesity is closely related to sustained low-grade systemic inflammation, obesityrelated complications, and NCDs

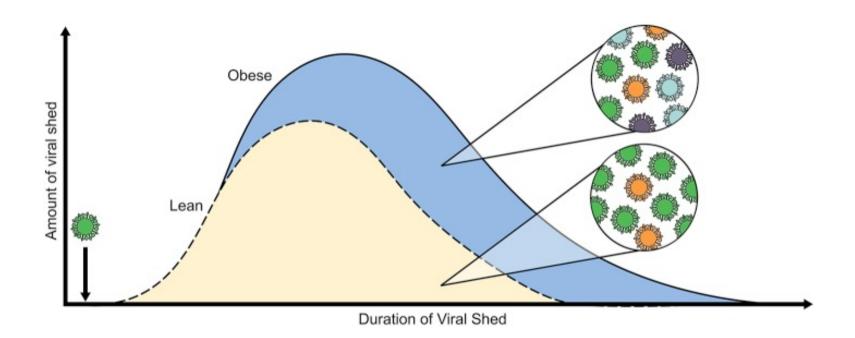
Rosen E, Cell, 2014 Goossens GH, Obes Facts, 2017

🛿 Maastricht UMC+

Immunological perturbations in obesity impact the response to infection

• T cells exert a key role in the response to infection by supporting the function and regulating activation of other immune cells to produce pro-/anti-inflammatory factors.

• Obesity


- Dampened and delayed antiviral responses to infection (i.e. reduced efficacy of T and B cell responses).
- Reduced effectiveness of antivirals and vaccination.
- Increased viral load and life cycle.

Green & Beck, Curr Opin Immunol, 2017 Dhurandhar et al., Obes Rev, 2015 Honce et al., Front Immunol, 2019 Goossens GH, Obes Facts, 2020

Increased viral load and extended infections in the obese host

Poorer outcomes and recovery from infections in obesity

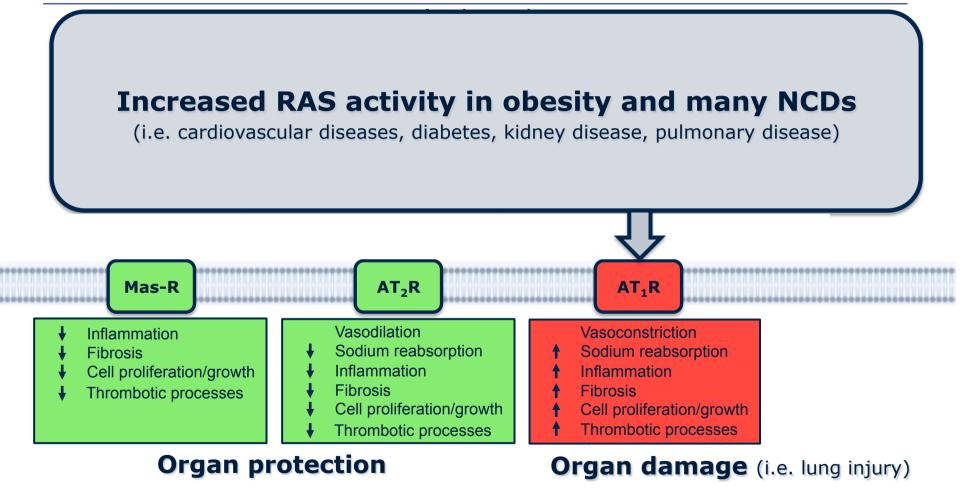
Honce et al., Front Immunol, 2019

Maastricht UMC+

Obesity and COVID-19: Shared immunological perturbations

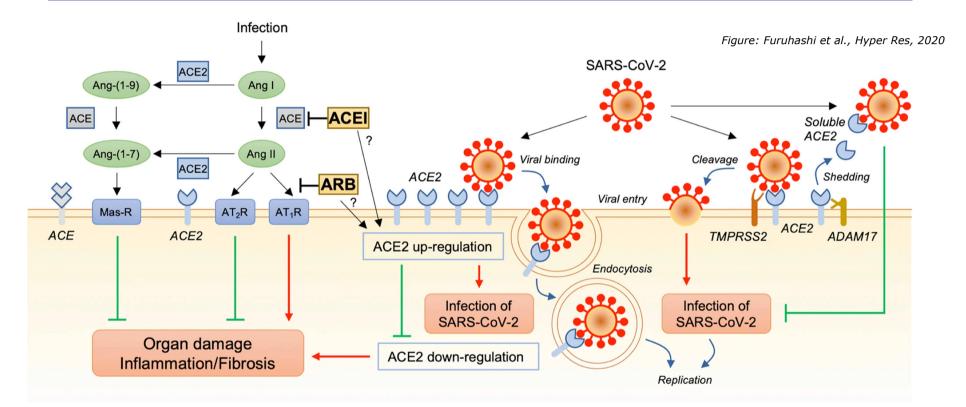
- SARS-CoV-2 invasion \rightarrow host immune response.
- A robust and persistent antiviral immune response might induce massive production of inflammatory cytokines
 → `Inflammatory cytokine storm' → organ damage.

COVID-19 patients


Increased proinflammatory cytokines (i.e. IL-6, TNFa) and lower CD4+ and/or CD8+ T cell and total T lymphocyte count in more severe cases (i.e. severe pneumonia / ICU)

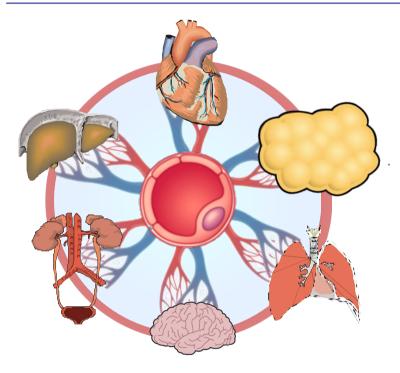
→ `Cytokine storms' related to COVID-19 severity.

Perlman & Dandekar, Nat Rev Immunol, 2005 Xu et al., Lancet Resp Med, 2020 Chen et al., J Clin Invest, 2020 Huang et al., Cytokine Part A, 2020 Goossens GH, Obes Facts, 2020 Maastricht University


Obesity – inflammation – COVID-19: A key role for the renin-angiotensin system?

Obesity – inflammation – COVID-19: A key role for the renin-angiotensin system?

Elevated plasma Ang II concentrations in patients with COVID-19, associated with increased viral load and degree of lung injury

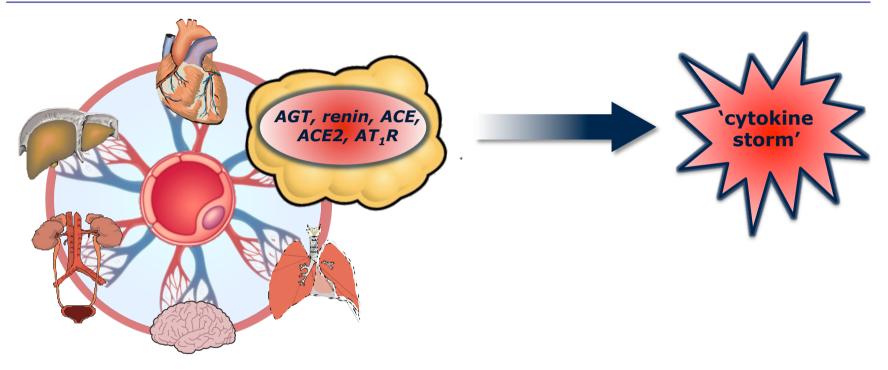


Furuhashi et al., Hyper Res, 2020 Liu et al., Sci China Life Sci, 2020

Maastricht University

💋 Maastricht UMC+

Increased RAS activity in obesity may impact COVID-19 susceptibility and outcomes



Goossens GH, Obes Rev, 2003

Increased RAS activity in obesity may impact COVID-19 susceptibility and outcomes

The increased fat mass in obesity, characterized by a pro-inflammatory phenotype and increased RAS activity, may impact COVID-19 initiation, progression and outcomes

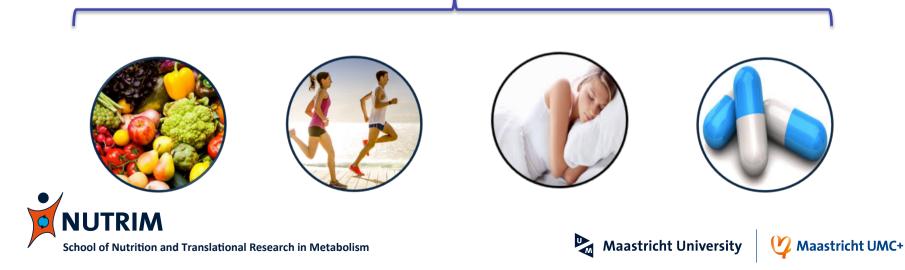
Goossens GH, Obes Rev, 2003 Goossens GH, Obes Facts, 2020

Maastricht University

Maastricht UMC+

- Careful interpretation of early studies! (i.e. retrospective, uncontrolled, confounders, limited statistical power)
- RCTs investigating the effects of immunosuppressants and ACEi/ARBs (vs. usual care or placebo) → many ongoing.
- A better understanding of COVID-19 pathogenesis and treatment responses is needed to develop/optimize strategies to combat COVID-19 in population subgroups.
- Better phenotyping of patients: Beyond BMI
 → fat mass, body fat distribution (W/H ratio).
- Impact RAS blockade on tissue ACE2 (i.e. adipose tissue).

Goossens GH, Obes Facts, 2020


Maastricht UMC+

Prevention and clinical management of obesity during the COVID-19 pandemic

Weight gain prevention and continuous management of obesity and related complications is crucial!

- Obesity is a major risk factor for the initiation, progression and outcomes of COVID-19.
- Link between immunological perturbations, increased activity of the renin-angiotensin system and COVID-19 susceptibility and clinical outcomes in people with obesity.
- More detailed phenotyping of COVID-19 patients is needed to better understand disease pathogenesis and treatment responses in different populations → Beyond BMI!
- Weight gain prevention and continuous management of obesity and related complications is crucial to lower the risk of SARS-CoV-2 infection and poor outcomes in COVID-19 patients.

	Obes Facts			
Obesity Facts	DOI: 10.1159/000510719 Received: July 8, 2020 Accepted: August 4, 2020 Published online: August 13, 2020	© 2020 The Author(s) Published by S. Karger AG, Basel www.karger.com/ofa	Karger Open access	
	This article is licensed under the Creative Commons Attributi tional License (CC BY-NC-ND) (http://www.karger.com/Serv tion for commercial purposes as well as any distribution of m			

Position Statement

Obesity and COVID-19: A Perspective from the European Association for the Study of Obesity on Immunological Perturbations, Therapeutic Challenges, and Opportunities in Obesity

Gijs H. Goossens^{a, b} Dror Dicker^{a, c} Nathalie J. Farpour-Lambert^{a, d} Gema Frühbeck^{a, e} Dana Mullerova^{a, f} Euan Woodward^{a, g} Jens-Christian Holm^{a, h}

https://www.karger.com/Article/FullText/510719

Acknowledgements

Tel Aviv University, Tel Aviv, Israel

Dr. Dror Dicker

Geneva University Hospitals and University of Geneva, Geneva, Switzerland Dr. Nathalie Farpour-Lambert

University of Navarra, Spanish Health Institute Carlos III, Pamplona, Spain Prof. dr. Gema Frühbeck

Charles University, Pilsen, Czechia Dr. Dana Mullerova

European Association for the Study of Obesity, Teddington, United Kingdom Euan Woodward

Holbæk University Hospital, Holbæk, Denmark Dr. Jens-Christian Holm

European Association for the Study of Obesity

Contact: G.Goossens@maastrichtuniversity.nl

Therapeutic strategies to combat COVID-19

Immune-modulating drugs

- (Hydroxy)chloroquine

(to lower viral invasion)

- Selective JAK1/JAK2 blockade

(to lower viral invasion and induce immune suppression)

- Blockade of cytokine receptors
- (i.e. IL-6, IL-1 antibodies; to lower cytokine storm)
- Corticosteroids and other immunosuppressants

RAAS- modulating drugs

- Renin-angiotensin system inhibitors/blockers (ACEi/ARBs)
- Recombinant ACE2

Goossens GH, Obes Facts, 2020

