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Abstract: The recommendation to limit dietary saturated fatty acid (SFA) intake has persisted 
despite mounting evidence to the contrary. Most recent meta-analyses of randomized trials and 
observational studies found no beneficial effects of reducing SFA intake on cardiovascular 
disease (CVD) and total mortality, and instead found protective effects against stroke. Although 
SFAs increase low-density lipoprotein (LDL)-cholesterol, in most individuals, this is not due to 
increasing levels of small, dense LDL particles, but rather larger LDL which are much less 
strongly related to CVD risk. It is also apparent that the health effects of foods cannot be 
predicted by their content in any nutrient group, without considering the overall macronutrient 
distribution. Whole-fat dairy, unprocessed meat, eggs and dark chocolate are SFA-rich foods 
with a complex matrix that are not associated with increased risk of CVD. The totality of 
available evidence does not support further limiting the intake of such foods. 
 
Condensed Abstract: Overall, the results of randomized clinical trials and observational cohort 
studies do not support a rationale for population-wide restriction of dietary saturated fat to a 
target below current intake levels. Furthermore, lower cardiovascular disease risk cannot be 
confidently inferred from reduction in plasma low-density lipoprotein cholesterol concentrations 
induced by such a dietary restriction. Conversely, a reciprocal increase in carbohydrate intake 
can lead to unfavorable changes in cardiometabolic risk factors. A food-based approach to 
guiding saturated fat intake is warranted particularly since foods have a complex matrix, and 
their health effects cannot be predicted by the content of any individual nutrient.  
 
Key Words: cardiovascular disease, diet, saturated fat, food matrix 
 
Abbreviations 
Apo = apolipoprotein 
CHD = coronary heart disease 
CVD = cardiovascular disease 
HDL = high-density lipoprotein 
LDL = low-density lipoprotein 
MCPD = monochloropropandiol 
PURE study = Prospective Urban Rural Epidemiological study 
SFA(s) = saturated fatty acid(s). 
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Introduction 

Lowering the consumption of saturated fat has been a central theme of US dietary goals 

and recommendations since the late 1970s (1). Since 1980, it has been recommended that 

saturated fatty acid (SFA) intake be limited to less than 10% of total calories as a means of 

reducing risk for cardiovascular disease (CVD) (1). In 2018, the US Departments of Agriculture 

and Health and Human Services asked for public comments in response to the following 

question: “What is the relationship between saturated fat consumption (types and amounts) and 

risk of CVD in adults?” (2). This review aims to address this important question by examining 

available evidence on the effects of saturated fats on health outcomes, risk factors and potential 

mechanisms underlying cardiovascular and metabolic outcomes, which will have implications 

for the 2020 Dietary Guidelines for Americans.  

The relationship between dietary SFAs and heart disease has been studied in more than 

75,000 people and summarized in a number of systematic reviews of observational studies and 

randomized controlled trials. Some meta-analyses find no evidence that reduction in saturated fat 

consumption may reduce CVD incidence or mortality (3-6), whereas others report a significant – 

albeit mild – beneficial effect (7,8). Therefore, the basis for consistently recommending a diet 

low in saturated fat is unclear. The purpose of this review is to critically evaluate the health 

effects of dietary SFAs and to propose an evidence-based recommendation for a healthy intake 

of different SFA food sources. 

Saturated fatty acids in foods and heterogeneity in their biologic effects 

SFAs comprise a heterogeneous group of fatty acids that contain only carbon-to-carbon 

single bonds (Table 1). SFAs differ on the basis of their carbon chain length, and are categorized 

as short (4–6 carbon atoms), medium (8–12 carbons), long (14–20 carbon atoms) and very-long 
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(22 or more carbon atoms) chain fatty acids, although these definitions are not standardized. The 

melting point of individual SFAs increases with increasing chain length. SFAs of ≥10 carbon 

atoms are solid at room temperature (9). The primary food contributors of individual SFAs in the 

diet also differ by SFA chain length. For example, the major food sources of short-chain SFAs 

are dairy fats, while medium and long-chain SFAs are predominantly found in red meat, dairy 

fats and plant oils (9,10). Notably, food sources of SFAs contain different proportions of various 

fatty acids (Figure 1) in addition to other nutrients that, as described below, can substantially 

influence their observed physiological and biologic effects (9,11,12). 

SFAs are also classified on the basis of the presence or absence of methyl branches on the 

carbon chain. For example, fatty acids with no methyl branch (e.g., palmitic, stearic) are 

classified as straight-chain fatty acids, while those with one or more methyl branches are termed 

branched-chain fatty acids (e.g., iso-pentadecanoic). Branched-chain SFAs are found primarily in 

dairy, beef, and other ruminant-derived foods (13), and have similar physicochemical properties 

as unsaturated fatty acids, in particular lower melting point (or more accurately, phase transition 

temperature). In experimental animal studies, branched-chain fatty acids alter the microbiota 

composition in the direction of microorganisms that use these fatty acids in cellular membranes 

(14), and since they are normal constituents of the healthy human infant gut (15), these fatty 

acids could play a role in normal colonization. 

Circulating SFAs can also be classified based on their origin as exogenous or 

endogenous. Specifically, circulating levels of even-number chain SFAs such as myristic, 

palmitic and stearic acid are influenced by dietary intakes (i.e., exogenous sources). Still, they 

are also endogenously synthesized via de novo lipogenesis, a process whereby excess 

carbohydrate and protein are converted to fatty acids (16). Also, odd-number chain SFAs such as 
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pentadecanoic and heptadecanoic acids are primarily synthesized by the bacterial flora in the 

rumen, although animal studies do suggest a potential role of endogenous synthesis through 

elongation of propionic and heptanoic acids (17). Circulating pentadecanoic and heptadecanoic 

acid levels correlate with self-reported dairy food intake and have thus been used as objective 

markers of dairy fat consumption (18-24). Evidence from large observational studies indicates 

different associations for SFAs of varying physical, chemical and metabolic structures, thereby 

supporting divergent effects of different SFAs on blood lipids, glucose-insulin homeostasis, 

insulin resistance and diabetes (25-27). 

In discussions of foods, it is useful to distinguish between “fat” and “fatty acids.” 

Saturated fat can be defined as foods that are primarily lipid and solid at temperatures at which 

they are customarily stored and consumed. Examples are butter and butter-fat, dairy-derived fats 

contained in cheese, animal fats such as tallow and lard, and plant oils such as cocoa butter 

(chocolate), coconut oil, palm and palm kernel oils. These fats are solid because they are 

comprised primarily of “saturated fatty acids,” where the term “saturated” designates a specific 

chemical structural property of fatty acids, specifically a reduced ability to chemically react with 

I2 or H2. The major SFAs in most natural human diets are stearic, palmitic, myristic, and lauric 

acids with linear chains of 18, 16, 14, and 12 carbon atoms, respectively. Foods from which 

saturated fats can be derived, such as full-fat dairy, yogurt, and cheese, are usually said to 

contain saturated fats although, in fact, they contain SFAs. SFAs are chemically defined 

structures, whereas saturated fats are complex chemical mixtures of all major SFAs in differing 

proportions, along with many other fatty acids (odd-numbered chain and branched chain SFAs, 

and unsaturated fatty acids with typically from 1 to 6 double bonds). Other components are 

present in saturated fats that are not fatty acids at all (e.g., glycerol). The vast majority of human 
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studies on saturated fats have used foods containing SFA and have compared these to diets with 

liquid oils, typically of vegetable origin. These, too, contain SFAs but in lower proportions. 

Evidence on the health effects of saturated fat 

In the 1950s, with the increase in coronary heart disease (CHD) in Western countries, 

research on nutrition and health has focused on a range of “diet-heart” hypotheses. These 

included the putative harmful effects of dietary fats (particularly saturated fat) and the lower risk 

associated with the Mediterranean diet to explain why individuals in the US, Northern Europe 

and the UK were more prone to CHD. In contrast, those in European countries around the 

Mediterranean had a lower risk. These ideas were fueled by ecologic studies such as the Seven 

Countries Study. In recent decades, however, diets have changed substantially in several regions 

of the world. For example, the very high intake of saturated fat in Finland has decreased 

considerably, with per capita butter consumption decreasing from ~16 kg/year in 1955 to ~3 

kg/year in 2005, and the percent energy from saturated fat decreasing from ~20% in 1982 to 

~12% in 2007 (28). Therefore, the dietary guidelines that were developed based on information 

from several decades ago may no longer be applicable. 

A few large and well-designed prospective cohort studies, which used validated 

questionnaires to assess diet and recorded endpoints in a systematic manner, were initiated 

recently. They demonstrated that replacement of fat with carbohydrate was not associated with 

lower risk of CHD and may even be associated with increased total mortality (29-31). 

Furthermore, a number of systematic reviews of cohort studies have shown no significant 

association between saturated fat intake and coronary artery disease or mortality, and some even 

suggested a lower risk of stroke with higher consumption of saturated fat (3,6,32,33). These 

studies were conducted predominantly in high-income countries (US and Europe) but few were 
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conducted in other regions of the world, overall representing ~80% of the global population. 

Likewise, data from the Fatty Acids and Outcomes Research Consortium consisting of 15 

prospective cohorts worldwide (33,083 adults who were free of CVD) demonstrated that 

biomarkers of very long-chain SFA (20:0, 22:0, 24:0) were not associated with total CHD 

(associations for fatal and non-fatal CHD were similar) and, if anything, levels in plasma/serum 

(but not phospholipids) may be inversely associated with CHD (34). 

Recently, in a large and the most diverse study addressing this question, the PURE 

(Prospective Urban Rural Epidemiological) study (35) in 135,000 people mostly without CVD 

from 18 countries on five continents (80% low- and middle-income countries), increased 

consumption of all types of fat (saturated, monounsaturated and polyunsaturated) was associated 

with lower risk of death and had a neutral association with CVD. By contrast, a diet high in 

carbohydrate was associated with higher risk of death, but not with risk of CVD. This study also 

demonstrated that individuals in the quintile with the highest saturated fat intake (about ~14% of 

total daily calories) had lower risk of stroke, consistent with the results from meta-analyses of 

previous cohort studies (36). Furthermore, in a newly-published study of 195,658 participants 

from the UK Biobank who were followed up for 10.6 years, there was no evidence that saturated 

fat intake was associated with incident CVD. In contrast, the substitution of polyunsaturated for 

saturated fat was associated with higher CVD risk. While there was also a positive relation of 

saturated fat intake with all-cause mortality, this became significant only with intakes well above 

average consumption (37). Notably, the diet with the lowest hazard ratio for all-cause mortality 

comprised high fiber (10–30 g/day), protein (14–30%), and monounsaturated fat (10–25%) 

intakes and moderate polyunsaturated fat (5% to <7%) and starch (20% to <30%) intakes (37). 

For dietary carbohydrate, as also shown in the PURE study, higher consumption (mainly from 
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starchy carbohydrates and sugar) was associated with a higher risk of CVD and mortality (37). In 

the context of contemporary diets, therefore, these observations would suggest there is little need 

to further limit the intakes of total or saturated fat for most populations. By contrast, restricting 

carbohydrate intake, particularly refined carbohydrates, may be more relevant today for 

decreasing the risk of mortality in some individuals, e.g., those with insulin resistance and type 2 

diabetes. 

Most randomized trials of nutrient intake and clinical events have been relatively small in 

size. Those that comprise the basis of dietary recommendations to limit dietary saturated fat were 

conducted some 40 to 50 years ago (38), and have important methodological flaws, as described 

further below. By far, the largest contemporary study is the WHI (Women’s Health Initiative) 

trial in nearly 49,000 women, which demonstrated that risk for heart attack and stroke was 

unaffected after 8 years on a low-fat diet in which saturated fat provided 9.5% of total daily 

energy intake (39). The PREDIMED (Prevención con Dieta Mediterránea) trial compared a 

standard low-fat diet to a Mediterranean diet supplemented with nuts or olive oil. Despite an 

increase in total fat intake by 4.5% of total energy (including slightly higher saturated fat 

consumption), major cardiovascular events and death were significantly reduced compared to the 

control group (40). Furthermore, in the six most recent systematic reviews and meta-analyses of 

randomized trials (many of which were small and conducted more than 40 years ago but still 

comprise the core of current dietary recommendations), results showed that replacing saturated 

fat with polyunsaturated fat has no significant effect on coronary outcomes (the primary outcome 

of these trials) or on total mortality (5,7,41). Even if these analyses were to be challenged, for 

example, based on the criteria for study selection or other lines of evidence (42), an important 

possibility to consider is that an apparently lower risk of CVD with substitution of SFA by 
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polyunsaturated fatty acids could be attributed to a possible beneficial effect of polyunsaturated 

fatty acids and not necessarily to an adverse effect of SFAs. 

There is, therefore, a large body of information that raises questions regarding 

conventional beliefs about SFAs and clinical outcomes. Taken together, the evidence from both 

cohort studies and randomized trials does not support the assertion that further restriction of 

dietary saturated fat will reduce clinical events.  

Low-density lipoprotein-cholesterol and other biomarkers for assessing the effects of 

dietary saturated fat on cardiovascular risk 

Plasma low-density lipoprotein (LDL)-cholesterol concentration has traditionally been 

used to assess risk for CVD and to monitor the effects of lifestyle and pharmacological 

interventions (43). However, there are weaknesses in the argument that a reduction in CVD risk 

with saturated fat restriction can be inferred from the well-documented capacity of SFAs to 

increase LDL-cholesterol when substituted for carbohydrate or cis-unsaturated fatty acids (12). 

First, while it is evident that LDL particles play a causal role in the development of CVD (44,45) 

and that, in general, there is an inverse relationship between change in LDL-cholesterol and 

CVD benefit (45), a diet-induced reduction of LDL-cholesterol cannot be inferred to result in 

CVD benefit without having the means for a comprehensive assessment of other biologic effects 

that may accompany this reduction. In this regard, it is notable that post-menopausal estrogen 

plus progestin therapy (46) and treatment with several cholesteryl ester transport protein 

inhibitors (47) result in no CVD benefit despite substantial LDL-cholesterol lowering. In 

contrast, Mediterranean-style dietary interventions reduce CVD risk without significantly 

reducing LDL-cholesterol (48,49). Moreover, inhibition of sodium-glucose cotransporter type 2 

reduces CVD events despite an increase in LDL-cholesterol levels (50). 
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A second reason that a reduction in LDL-cholesterol induced by dietary saturated fat 

restriction cannot be inferred to yield a proportional reduction in CVD risk is the observation that 

the lower LDL-cholesterol concentration primarily reflects reduced levels of large LDL particle 

subspecies (51) which are more cholesterol-enriched but have much weaker associations with 

CVD risk than smaller LDL particles (44,52) and are not reduced by saturated fat restriction in 

the majority of individuals (51). Moreover, decreasing saturated fat intake also lowers the levels 

of high-density lipoprotein (HDL)-cholesterol, and hence has a relatively small effect on the ratio 

of total to HDL-cholesterol (12), which is a robust marker of CVD risk (53). Thus, the potential 

benefit of dietary restriction of saturated fat could be substantially overestimated by reliance on 

the change in LDL-cholesterol levels alone. This concern is highlighted in several randomized 

trials where changes in total and LDL-cholesterol did not inform the impact of changes in dietary 

SFAs on CVD risk (5,39,40). Likewise, the PURE study reported that the observed hazard ratio 

for the association between saturated fat and CVD events does not fit a relation with plasma 

LDL-cholesterol, but rather, is related to the ratio of apolipoprotein B (ApoB) to ApoA1, which 

is a measure related to atherogenic particle concentration (ApoB is found in LDL and very low-

density lipoprotein particles, and ApoA1 is found in HDL particles); in fact, this ratio is lower in 

those with higher saturated fat intake (35). For these reasons, dietary effects on CVD risk may 

not be reliably reflected by changes in LDL-cholesterol levels, and it is, therefore, imperative to 

develop and implement more valid surrogate markers for assessing CVD risk and monitoring 

diet-induced effects in research and clinical practice. 

Modulation of the health effects of saturated fat by dietary carbohydrate intake and insulin 

resistance 
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Insulin-resistant states like the metabolic syndrome, prediabetes, and type 2 diabetes 

affect over 100 million people in the US (54). Insulin resistance manifests functionally as 

carbohydrate intolerance. For example, insulin-resistant lean subjects demonstrate impaired 

skeletal muscle glucose oxidation, increased hepatic de novo lipogenesis, and atherogenic 

dyslipidemia after a high-carbohydrate meal (55). Therefore, an individual with insulin 

resistance has a higher propensity to convert carbohydrate to fat, which will further exacerbate 

the insulin-resistant phenotype. In addition to standard risk factors (e.g., high triglyceride and 

low HDL-cholesterol concentrations, increased central adiposity, hypertension, hyperglycemia, 

hyperinsulinemia), this phenotype also includes increased circulating levels of SFAs and 

lipogenic fatty acids, such as palmitoleic acid (C16:1). 

It is important to distinguish between dietary saturated fat and circulating SFAs. Whereas 

several reports show no association between increased intake of SFAs and risk for chronic 

disease (6,29), individuals with higher circulating levels of even-chain SFA (particularly 

palmitate, C16:0) have increased risk of developing metabolic syndrome (56), diabetes (57-59), 

CVD (59), heart failure (60), and mortality (61). Notably, however, the amount of circulating 

SFAs in blood is not related to saturated fat intake from the diet but instead tends to track more 

closely with dietary carbohydrate intake. For example, an increase in saturated fat consumption 

by 2–3-fold either has no effect or decreases serum levels of SFA in the context of lower 

carbohydrate intake (62-65). Decreased accumulation of circulating SFA in response to diets 

lower in carbohydrate and higher in saturated fat is partially mediated by lower production 

(through de novo lipogenesis), but also increased clearance. Low-carbohydrate diets consistently 

increase rates of whole-body fat oxidation, which includes the preferred use of SFA for fuel. 

Thus, the combination of greater fat oxidation and attenuation of hepatic lipogenesis could 
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explain why a higher dietary saturated fat intake is associated with lower circulating SFA in the 

context of low carbohydrate intake. 

Although palmitic acid is the primary fatty acid product of de novo lipogenesis, serum 

palmitoleic acid (cis-C16:1n7), a product of stearoyl CoA desaturase-1 activity, is a better proxy 

of lipogenesis because of its low content in the diet and the fact that it increases proportionally 

more than any other fatty acid when carbohydrate is converted to fat (66). Several studies 

support a close link between increased dietary carbohydrate intake and increased palmitoleic acid 

levels, an effect that is independent of changes in weight and saturated fat intake (62,63,65). 

Beyond its importance as a surrogate for de novo lipogenesis, palmitoleic acid levels in blood 

and adipose tissue are consistently and strongly linked to obesity and hypertriglyceridemia (67), 

hyperglycemia and type 2 diabetes (59,68,69), heart failure (60,70), and CVD mortality (61,70). 

Furthermore, in non-diabetic men, higher proportions of palmitoleic acid in erythrocyte 

membranes were significantly associated with worsening of hyperglycemia (68) and 

development of metabolic syndrome (56,71). In the ARIC (Atherosclerosis Risk in 

Communities) study, the highest quintile of plasma phospholipid palmitoleic acid was associated 

with a 67% greater risk of incident heart failure (60) and 52% greater risk of incident ischemic 

stroke (72) compared with the lowest quintile. Furthermore, in the Physician’s Health Study, an 

increase in plasma palmitoleic acid concentration by 1 standard deviation was associated with a 

19% greater odds ratio for coronary artery disease (73) and a 17% greater odds ratio for 

congestive heart failure (70). Clearly, the impact of dietary SFA on health must consider the 

important role of carbohydrate intake and the underlying degree of insulin resistance, both of 

which significantly affect how the body processes saturated fat. This intertwining aspect of 
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macronutrient physiology and metabolism has been consistently over-looked in previous dietary 

recommendations.  

Tailoring dietary saturated fat intake to cardiometabolic risk  

Despite many decades of nutrition research in humans and animal models, the scientific 

community has not yet reached a consensus on “the one diet” (i.e., low-fat, Mediterranean) that 

achieves optimal metabolic health for all. The highly heterogeneous outcomes of dietary 

intervention studies suggest that some individuals have better outcomes for specific diets than 

others. Therefore, the objective should be to match each person to their individual best diet, 

which is culturally appropriate (74). Conversely, as discussed above, the once apparently tight 

link between dietary SFAs and CVD appears to be loosening as a result of mounting evidence 

that casts doubt on previously established beliefs. Part of the debate relates to the role of 

variation in specific food sources of SFAs, and part to inter-individual variation in the biologic 

and clinical effects of these SFAs. Some research over the last two decades has shifted towards 

the identification of genetic factors underlying the inter-individual differences in response to 

different dietary fats. The information emerging from these studies suggests that genetic variants 

may modulate the relationship between dietary SFAs and CVD-related biomarkers (75). In some 

cases, dietary SFAs enhance the association of genetic variants predisposing to increased CVD 

risk. This has been shown for the apolipoprotein E (APOE) gene, one of the most extensively 

researched loci in relation to CVD risk. Specifically, carriers of the less common APOE4 allele 

have repeatedly shown greater fasting plasma lipid responses to saturated fat in the diet than non-

APOE4 carriers (76,77) and similar findings have been reported in the postprandial state (78). 

These gene by diet interactions have been demonstrated for other CVD risk factors as well, such 

as obesity. For example, by using a weighted genetic risk score calculated on the basis of 63 
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obesity-associated variants in two populations, the Genetics of Lipid Lowering Drugs and Diet 

Network (GOLDN) and the Multi-Ethnic Study of Atherosclerosis (MESA), it was shown that 

dietary SFA intake interacts with the genetic risk score to modulate body mass index (79). In 

brief, the association between high SFA intake and obesity was apparent only in subjects in the 

upper tertile of the GRS, i.e. those with stronger genetic predisposition to obesity may be more 

sensitive to dietary SFA (79). In terms of single locus by diet interactions, one of the most 

studied ones is the APOA2. A putative functional variant -265T>C (rs5082) within the ApoA2 

promoter gene has shown consistent interactions with saturated fat intake to influence the risk of 

obesity. Specifically, saturated fat intake is associated with higher average body mass index 

exclusively in subjects who are homozygotes for the less common T allele, but not in those who 

are heterozygotes for the T allele or homozygotes for the most common C allele (80,81). The 

potential mechanism for this ApoA2 by saturated fat interaction has been elucidated recently 

(82). Nevertheless, based on current evidence, and in the absence of randomized dietary 

intervention studies, the effects of this and other gene-diet interactions (79,83,84) cannot be 

attributed specifically to SFAs; it is equally likely that the observed effects are related to the 

overall influence of foods or dietary patterns containing the SFAs. The current information 

suggests that genetic predisposition modulates the association between saturated fat intake and 

cardiovascular risk. It is this segment of the population (the SFA-sensitive) where the reduction 

in SFA may be beneficial and could therefore be recommended. 

Obesity and type 2 diabetes are major contributors to the risk of CVD, and recent 

evidence suggests that the optimal diet for weight control and glycemic control depends in part 

on the individual’s “carbohydrate tolerance” (85), which in turn is determined by insulin 

resistance and insulin secretion capacity. Carbohydrate tolerance may also vary with level of 
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exercise/fitness of the individual. Whereas diets lower in total and saturated fat may be optimal 

for carbohydrate tolerant (i.e. insulin sensitive) individuals, a diet lower in carbohydrates and 

higher in fiber and fat seems to be optimal for patients with type 2 diabetes (86). In the US, the 

prevalence of prediabetes among adults was 37 % in 2012 and is projected to rise to 40 % in 

2030 (87), accompanied by slight increases in the prevalence of type 2 diabetes. This novel 

information emphasizes the need for a more personalized and food-based approach in 

recommending levels of total and saturated fat in the diet. 

From single nutrients to whole foods: lessons from ancestral diets, food processing, and the 

food matrix 

The overall health effect of fats and oils depends on the content of SFAs and unsaturated 

fatty acids but is not merely the sum of the effects of the individual lipid components. Rather, it 

depends on the interacting effects from naturally occurring components and from unhealthy 

compounds introduced by processing. These compounds are often overlooked in the assessment 

of health effects of oils and fats, and the risk of this is illustrated by the “trans-fat” story. The 

substitution of traditional dairy fats with vegetable oils has a long history, dating back at least to 

the 1870s US legislation, and has driven the saturated vs unsaturated fat debate (88). By the 

1950s, the major component of 20th-century vegetable oils, dietary polyunsaturated linoleic acid, 

was widely recognized to decrease plasma cholesterol concentrations, and hence surmised to 

have a more favorable effect on atherosclerosis than saturated fat, which could raise cholesterol. 

However, despite its high content of SFAs, dairy fat does not promote atherogenesis (89). The 

ability of adult humans to digest the sugar unique to milk, lactose, evolved separately numerous 

times (90,91), demonstrating unequivocally that the ancestors of many modern humans required 

continuous dairy consumption for survival to reproductive age. Bovine (92), goat (93) and sheep 
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(94) domestication started around the same time, about 10,000 years ago, coinciding with the 

emergence of lactase persistence, i.e., the ability to digest lactose. The saturated fat of the meat 

of these species was likely a major contributor to human diets, along with fruit oils – where 

available – such as olive, avocado, and palm, all low in polyunsaturated fat, with the latter also 

being high in saturated fat. Coconut fat would have been the only abundant lipid-rich seed, and 

that too is highly saturated. Seed oil consumption, which now dominates the food supply, would 

have been negligible back then and until the advent of industrialized fat extraction in recent 

centuries. These historical facts demonstrate that saturated fats were an abundant, key part of the 

ancient human diet. 

By the 1970s, many experimental studies in animal models were conducted with dietary 

coconut oil of unspecified origin, which reliably caused dramatic increases in hepatic and blood 

cholesterol in rodents; this was taken as evidence that dietary SFAs are inherently atherogenic 

(95,96). However, coconut oils of the era were usually highly processed and often fully 

hydrogenated. Recent gentle preparation methods yield “virgin” coconut oils (97) that do not 

raise LDL-cholesterol compared to customary diets and have similar effects compared to olive 

oil in humans (98). Studies in rodents demonstrated that while highly processed (“refined-

bleached-deodorized”) coconut oil raises serum cholesterol, virgin coconut oil does not (99,100). 

In the last decade, the concept of process contaminants generated from high-temperature 

treatment of oils in the presence of trace metals has come to the fore. The triglyceride derivatives 

glycidyl and monochloropropandiol (MCPD) esters are common contaminants, well-studied for 

their carcinogenic properties in rodents (101). Recently, the metabolic effects of virgin coconut 

oil and of oil processing on human liver cells were investigated. A method was developed to 

enable cells to take up whole oil, including process contaminants. Oil was passed through 
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successive stages of processing, starting with (a) virgin oil, which was then subjected to (b) free 

fatty acid removal, (c) bleaching, and (d) deodorization. With increasing processing, cellular 

cholesterol increased, HMGCoA reductase expression increased and the activity of the 

cholesterol oxidation enzyme CYP7A1 decreased. A major chemical alteration in the oil was the 

increase in both glycidyl and MCPD esters. Remarkably, addition of either glycidol or MCPD to 

virgin coconut oil partially recapitulated the effects on cellular cholesterol metabolism (102). 

Experimental rodent studies using oxidation-resistant linoleic acid, dideuterated in the bis allylic 

position, support the hypothesis that oxidation products and not specific fatty acids cause plaque 

formation in transgenic mouse models (103). 

Human studies that assume all foods high in saturated fats are similarly atherogenic 

come, in many cases, from an era prior to the recognition of process contaminants. The 

American Heart Association recently issued a Presidential Recommendation to avoid saturated 

fats, based on studies conducted in the 1960s and the 1970s (38). Three studies conducted in 

Europe (Oslo, Norway (104); London, UK (105); and Helsinki, Finland (106)) and one study 

conducted in the US (Los Angeles (107)) comprised the core evidence chosen on the basis of the 

quality of study design, execution, and adherence. These studies were purported to have 

compared high saturated with high polyunsaturated fat diets over at least a 2-year period, and to 

have included biomarkers of adherence and collection of CVD events. Key quality parameters 

were that the diets did not include trans unsaturated fats as a major component and that the 

dietary intake of the comparison groups was controlled. However, careful inspection of the diets 

indicates that this was not the case. First, partially hydrogenated fish oils were major constituents 

of European (and Canadian) margarines and shortenings of this era (88). Hydrogenated fish oils 

are rich in a wide array of trans monoenes and polyenes not present in partially hydrogenated 
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vegetable oils (108). The Oslo study, for instance, explicitly estimated intake of partially 

hydrogenated fish oil at 40–50 g per day (109). Secondly, the three European studies all used 

customary diets as comparisons (105-107,110), which were substituted for experimental diets. 

One can thus infer that the European diets are tests of polyunsaturated fats against trans-plus-

saturated fats, which means that any effects described cannot be assigned to saturated fats alone. 

Dropping these three studies from a meta-analysis leaves the US trial, which did not find a 

significant difference between groups for its primary CVD outcome (38). We consider this to be 

the proper interpretation of these studies. 

Taken together, these observations strongly support the conclusion that the healthfulness 

of fats is not a simple function of their content in SFA but a result of the various components in 

the food, often referred to as the “food matrix”. While the various SFAs have distinct metabolic 

roles (9,11,12), ample evidence is available from research on specific foods that other food 

components and the food matrix likely dominate over saturated fat content, as discussed in the 

following section. Recommendations should, therefore, emphasize food-based strategies that 

translate for the public into understandable, consistent and robust recommendations for healthy 

dietary patterns. 

Health effects of differing food sources of saturated fatty acids 

Yogurt and cheese 

Dairy is the major source of SFA in most diets, and major dietary guidelines recommend 

low-fat or fat-free versions of dairy foods to limit SFA intake. However, food-based meta-

analyses consistently find that cheese and yogurt intakes are inversely associated with CVD risk 

(11,111-113). Whole-fat dairy may also be protective against type 2 diabetes (3,114,115). Using 

circulating biomarkers of dairy intake i.e., plasma levels of C17:0, an inverse association with 
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CHD was found (116); whereas for other biomarkers (15:0 and 17:0, but also the natural 

ruminant trans-16:1n7), a neutral association was found with total mortality (11). Moreover, a 

pooled individual-level analysis of nearly 65,000 participants across international cohorts found 

that plasma and tissue levels of odd-chain SFA (15:0, 17:0) and natural ruminant trans fatty 

acids (trans-16:1n7), all of which reflect dairy fat consumption, were associated with lower risk 

of diabetes (117). Cheeses and yogurts consist of complex food matrices and major components 

include different fatty acids, proteins (whey and casein), minerals (calcium, magnesium, 

phosphate), sodium, and phospholipid components of milk fat globule membrane (115). Yogurt 

and cheese also contain probiotics and bacterially-produced bioactive peptides, short-chain fatty 

acids, and vitamins such as vitamin K2. The complex matrix and components of dairy may 

explain why the effect of dairy food consumption on CVD cannot be explained and predicted by 

its content in SFA. 

Eggs 

Eggs can be a significant contributor to total SFA intake. However, eggs are also 

nutrient-dense, providing important nutrients that are not widely available in other foods. Well-

designed prospective, population-based studies have provided conflicting evidence on the 

relationship between egg consumption and CVD (118,119), but a number of meta-analyses have 

found that higher egg consumption is not associated with risk of CHD and may be associated 

with lower risk of stroke (120,121). Moreover, randomized controlled trials have found neutral 

or beneficial effects on cardiometabolic risk markers in people with prediabetes and type 2 

diabetes (122).  

Dark chocolate 
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Dark chocolate contains stearic acid (C18:0), which has a neutral effect on CVD risk. 

However, chocolate contains other nutrients that may be more important for CVD and type 2 

diabetes than its SFA content. Experimental and observational studies suggest that dark 

chocolate has multiple beneficial health effects, including potential anti-oxidative, anti-

hypertensive, anti-inflammatory, anti-atherogenic, and anti-thrombotic properties, as well as 

preventive effects against CVD and type 2 diabetes (123-125). 

Meat 

Although intake of processed meat has been associated with increased risk of CHD, 

intake of unprocessed red meat is not, which indicates that the SFA content of meat is unlikely to 

be responsible for this association (126). A meta-analysis found no differences in 

cardiometabolic risk factors between groups of individuals consuming more vs fewer than 0.5 

daily servings of meat (127). Prospective cohort studies also depict stronger associations of 

processed meat consumption, compared to unprocessed red meat consumption, in relation to type 

2 diabetes. Another meta-analysis found that processed meat gave rise to a 19% higher risk of 

type 2 diabetes but red meat consumption was not significantly associated with diabetes (127). 

The collective evidence from randomized controlled trials suggests there is low- to very-low-

certainty evidence supporting that diets restricted in red meat have a significant effect on major 

cardiometabolic outcomes (128). However, one analysis found a small but significant association 

of processed meat, unprocessed red meat, and poultry consumption with a higher risk of incident 

CVD, and a mild association of processed or unprocessed red meat with a higher risk of all-cause 

mortality (129). Nevertheless, meat is a major source of protein, bioavailable iron, minerals and 

vitamins. In modest amounts, unprocessed red meat constitutes an important part of the diet for 

the elderly and low-income populations in many developing countries (130).  
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Research gaps and directions 

The dietary recommendation to reduce intake of SFAs without considering specific fatty 

acids and food sources is not aligned with the current evidence base. As such, it may distract 

from other more effective food-based recommendations, and may also cause a reduction in the 

intake of nutrient-dense foods (such as eggs, dairy, and unprocessed meat) that may help 

decrease the risk of CVD, type 2 diabetes, and other non-communicable diseases, but also 

malnutrition, deficiency diseases and frailty, particularly among “at-risk” groups. Furthermore, 

based on several decades of experience, a focus on total SFA has had the unintended effect of 

misleadingly guiding governments, consumers, and industry toward foods low in SFA but rich in 

refined starch and sugar. All guidelines should consider the types of fatty acids and, more 

importantly, the diverse foods containing SFA, which may possess harmful, neutral, or even 

beneficial effects in relation to major health outcomes (Figure 2). We strongly recommend a 

more food-based translation of how to achieve a healthy diet and reconsidering the guidelines on 

reduction in total SFA. Indeed, a focus on gently processed foods is more likely to emerge as a 

key factor until much more is known about the health effects of specific process contaminants so 

that their levels can be minimized. 

Conclusions 

The long-standing bias against foods rich in saturated fats should be replaced with a view 

towards recommending diets consisting of healthy foods. What steps could shift the bias? We 

suggest the following measures: 1) Enhance the public’s understanding that many foods (e.g., 

whole-fat dairy) that play an important role in meeting dietary and nutritional recommendations 

may also be rich in saturated fats. 2) Make the public aware that low-carbohydrate diets high in 

saturated fat, which are popular for managing body weight, may also improve metabolic disease 
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endpoints in some individuals, but emphasize that health effects of dietary carbohydrate – just 

like those of saturated fat – depend on the amount, type and quality of carbohydrate, food 

sources, degree of processing, etc. 3) Shift focus from the current paradigm that emphasizes the 

saturated fat content of foods as key for health, to one that centers on specific traditional foods, 

so that nutritionists, dietitians, and the public can easily identify healthful sources of saturated 

fats. 4) Encourage committees in charge of making macronutrient-based recommendations to 

translate those recommendations into appropriate, culturally sensitive dietary patterns tailored to 

different populations. 
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Highlights  

• The US Dietary Guidelines recommend the restriction of saturated fatty acid (SFA) intake to 

less than 10% of calories to reduce cardiovascular disease (CVD).  

• Different SFAs have different biologic effects, which are further modified by the food matrix 

and the carbohydrate content of the diet.  

• Several foods relatively rich in SFAs, such as whole-fat dairy, dark chocolate and 

unprocessed meat, are not associated with increased CVD or diabetes risk. 

• There is no robust evidence that current population-wide arbitrary upper limits on saturated 

fat consumption in the US will prevent CVD or reduce mortality.  
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Figure Legends 

Figure 1.  Saturated fatty acid profiles of major food sources, i.e., whole-fat cheese, whole-

fat milk, and red meat. These data indicate that food sources of saturated fat contain different 

proportions of short-, medium-, and long-chain saturated fatty acids; these fatty acids have 

diverse physical and chemical characteristics, and differing effects on various blood lipids and 

lipoproteins (9,11,12). Data from the US Department of Agriculture, FoodData Central 

(https://fdc.nal.usda.gov/). 

Central illustration: Available evidence discussed in this manuscript supports the rationale for 

replacing dietary saturated fat targets with food-based guidelines for saturated fat intake. 
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Table 1.  Major naturally occurring saturated fatty acids.  

Abbreviation 
Common or 

systematic name 

Carbon chain 

length 
Major dietary sources 

4:0 Butyric Short Dairy foods 

6:0 Caproic Short Dairy foods 

8:0 Caprylic Medium Dairy foods, coconut and palm 

kernel oils 

10:0 Capric Medium Dairy foods 

12:0 Lauric Medium Coconut milk and oil 

14:0 Myristic Long Dairy foods 

15:0 Pentadecanoic Long Red meat, dairy foods, oils 

16:0 Palmitic Long Red meat, dairy foods, palm oil 

17:0 Heptadecanoic Long Red meat, dairy foods 

18:0 Stearic Long Dairy foods, meat, chocolate 

C15:0 and C17:0 are predominantly obtained from foods sources, whereas circulating levels of all other 

saturated fatty acids are influenced by both dietary intake and endogenous metabolism. 
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