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Abstract: The recommendation to limit dietary saturated fattid (SFA) intake has persisted
despite mounting evidence to the contrary. Mostmemeta-analyses of randomized trials and
observational studies found no beneficial effe€tseducing SFA intake on cardiovascular
disease (CVD) and total mortality, and instead tbprotective effects against stroke. Although
SFAs increase low-density lipoprotein (LDL)-choksi, in most individuals, this is not due to
increasing levels of small, dense LDL particleg, tather larger LDL which are much less
strongly related to CVD risk. It is also appardrttthe health effects of foods cannot be
predicted by their content in any nutrient groughaut considering the overall macronutrient
distribution. Whole-fat dairy, unprocessed meagjsegnd dark chocolate are SFA-rich foods
with a complex matrix that are not associated witeased risk of CVD. The totality of
available evidence does not support further lingitime intake of such foods.

Condensed Abstract: Overall, the results of randomized clinical triatsd observational cohort
studies do not support a rationale for populatiodewestriction of dietary saturated fat to a
target below current intake levels. Furthermoreidiocardiovascular disease risk cannot be
confidently inferred from reduction in plasma lowrdity lipoprotein cholesterol concentrations
induced by such a dietary restriction. Conversalseciprocal increase in carbohydrate intake
can lead to unfavorable changes in cardiometabskdactors. A food-based approach to
guiding saturated fat intake is warranted partidylgsince foods have a complex matrix, and
their health effects cannot be predicted by theéerdrof any individual nutrient.
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Introduction

Lowering the consumption of saturated fat has lzeeantral theme of US dietary goals
and recommendations since the late 1970s (1). 31988, it has been recommended that
saturated fatty acid (SFA) intake be limited taslésan 10% of total calories as a means of
reducing risk for cardiovascular disease (CVD) [1)2018, the US Departments of Agriculture
and Health and Human Services asked for public cemtsnin response to the following
guestion: “What is the relationship between saagrdt consumption (types and amounts) and
risk of CVD in adults?” (2). This review aims todadss this important question by examining
available evidence on the effects of saturateddiatisealth outcomes, risk factors and potential
mechanisms underlying cardiovascular and metabalicomes, which will have implications
for the 2020 Dietary Guidelines for Americans.

The relationship between dietary SFAs and heaeiadis has been studied in more than
75,000 people and summarized in a number of sysieneaiews of observational studies and
randomized controlled trials. Some meta-analysetrio evidence that reduction in saturated fat
consumption may reduce CVD incidence or mortaBy6), whereas others report a significant —
albeit mild — beneficial effect (7,8). Thereforkeetbasis for consistently recommending a diet
low in saturated fat is unclear. The purpose «f thview is to critically evaluate the health
effects of dietary SFAs and to propose an eviddrasead recommendation for a healthy intake
of different SFA food sources.

Saturated fatty acidsin foods and heterogeneity in their biologic effects

SFAs comprise a heterogeneous group of fatty dbatscontain only carbon-to-carbon

single bondsTable 1). SFAs differ on the basis of their carbon chaimgth, and are categorized

as short (4—6 carbon atoms), medium (8-12 carbtworg),(14-20 carbon atoms) and very-long



(22 or more carbon atoms) chain fatty acids, alifnathese definitions are not standardized. The
melting point of individual SFAs increases withrieasing chain length. SFAs®10 carbon
atoms are solid at room temperature (9). The pgrfaod contributors of individual SFAs in the
diet also differ by SFA chain length. For examples major food sources of short-chain SFAs
are dairy fats, while medium and long-chain SFAs@medominantly found in red meat, dairy
fats and plant oils (9,10). Notably, food sourceSIBAs contain different proportions of various
fatty acids (Figure 1) in addition to other nuttgethat, as described below, can substantially
influence their observed physiological and biologfitects (9,11,12).

SFAs are also classified on the basis of the poesenabsence of methyl branches on the
carbon chain. For example, fatty acids with no mldthanch (e.g., palmitic, stearic) are
classified as straight-chain fatty acids, whilestaavith one or more methyl branches are termed
branched-chain fatty acids (e.g., iso-pentadecanBranched-chain SFAs are found primarily in
dairy, beef, and other ruminant-derived foods (48Y have similar physicochemical properties
as unsaturated fatty acids, in particular lowertmglpoint (or more accurately, phase transition
temperature). In experimental animal studies, bradechain fatty acids alter the microbiota
composition in the direction of microorganisms ths¢ these fatty acids in cellular membranes
(14), and since they are normal constituents ohtradthy human infant gut (15), these fatty
acids could play a role in normal colonization.

Circulating SFAs can also be classified based eir trigin as exogenous or
endogenous. Specifically, circulating levels ofeveimber chain SFAs such as myristic,
palmitic and stearic acid are influenced by diefatgkes (i.e., exogenous sources). Still, they
are also endogenously synthesizedd@aovo lipogenesis, a process whereby excess

carbohydrate and protein are converted to fattysa(i6). Also, odd-number chain SFAs such as



pentadecanoic and heptadecanoic acids are prinsgnthesized by the bacterial flora in the
rumen, although animal studies do suggest a pateote of endogenous synthesis through
elongation of propionic and heptanoic acids (17)c@ating pentadecanoic and heptadecanoic
acid levels correlate with self-reported dairy fanthke and have thus been used as objective
markers of dairy fat consumption (18-24). Evidefroen large observational studies indicates
different associations for SFAs of varying physicélemical and metabolic structures, thereby
supporting divergent effects of different SFAs d¢oddl lipids, glucose-insulin homeostasis,
insulin resistance and diabetes (25-27).

In discussions of foods, it is useful to distinguizetween “fat” and “fatty acids.”
Saturated fat can be defined as foods that areaphinipid and solid at temperatures at which
they are customarily stored and consumed. Exanapéebutter and butter-fat, dairy-derived fats
contained in cheese, animal fats such as tallowaddand plant oils such as cocoa butter
(chocolate), coconut oil, palm and palm kernel.dilsese fats are solid because they are
comprised primarily of “saturated fatty acids,” wlehe term “saturated” designates a specific
chemical structural property of fatty acids, speeify a reduced ability to chemically react with
I, or Hp. The major SFAs in most natural human diets aarit, palmitic, myristic, and lauric
acids with linear chains of 18, 16, 14, and 12 caratoms, respectively. Foods from which
saturated fats can be derived, such as full-faydgogurt, and cheese, are usually said to
contain saturated fats although, in fact, they @ionSFAs. SFAs are chemically defined
structures, whereas saturated fats are complexichkbemixtures of all major SFAs in differing
proportions, along with many other fatty acids (edonbered chain and branched chain SFAs,
and unsaturated fatty acids with typically fronol6tdouble bonds). Other components are

present in saturated fats that are not fatty aatiddl (e.g., glycerol). The vast majority of human



studies on saturated fats have used foods congg8fih and have compared these to diets with
liquid oils, typically of vegetable origin. Thedep, contain SFAs but in lower proportions.
Evidence on the health effects of saturated fat

In the 1950s, with the increase in coronary heiggase (CHD) in Western countries,
research on nutrition and health has focused amgerof “diet-heart” hypotheses. These
included the putative harmful effects of dietarisfgparticularly saturated fat) and the lower risk
associated with the Mediterranean diet to explaig imdividuals in the US, Northern Europe
and the UK were more prone to CHD. In contrastsé¢hio European countries around the
Mediterranean had a lower risk. These ideas wealediuby ecologic studies such as the Seven
Countries Study. In recent decades, however, Hate changed substantially in several regions
of the world. For example, the very high intakesafurated fat in Finland has decreased
considerably, with per capita butter consumptiocréeasing from ~16 kg/year in 1955 to ~3
kg/year in 2005, and the percent energy from staddrfat decreasing from ~20% in 1982 to
~12% in 2007 (28). Therefore, the dietary guidditieat were developed based on information
from several decades ago may no longer be appéicabl

A few large and well-designed prospective cohartligs, which used validated
guestionnaires to assess diet and recorded endpoiatsystematic manner, were initiated
recently. They demonstrated that replacement ofiféit carbohydrate was not associated with
lower risk of CHD and may even be associated withdéased total mortality (29-31).
Furthermore, a number of systematic reviews of dadtadies have shown no significant
association between saturated fat intake and cor@mtery disease or mortality, and some even
suggested a lower risk of stroke with higher constion of saturated fat (3,6,32,33). These

studies were conducted predominantly in high-incoontries (US and Europe) but few were



conducted in other regions of the world, overgtresenting ~80% of the global population.
Likewise, data from the Fatty Acids and OutcomeseRech Consortium consisting of 15
prospective cohorts worldwide (33,083 adults whoenfeee of CVD) demonstrated that
biomarkers of very long-chain SFA (20:0, 22:0, 24v@re not associated with total CHD
(associations for fatal and non-fatal CHD were Einiand, if anything, levels in plasma/serum
(but not phospholipids) may be inversely associatigl CHD (34).

Recently, in a large and the most diverse studyessthg this question, the PURE
(Prospective Urban Rural Epidemiological) study)(@5135,000 people mostly without CVD
from 18 countries on five continents (80% low- aniddle-income countries), increased
consumption of all types of fat (saturated, monatunsted and polyunsaturated) was associated
with lower risk of death and had a neutral assamawith CVD. By contrast, a diet high in
carbohydrate was associated with higher risk offgdmut not with risk of CVD. This study also
demonstrated that individuals in the quintile vtlle highest saturated fat intake (about ~14% of
total daily calories) had lower risk of stroke, smtent with the results from meta-analyses of
previous cohort studies (36). Furthermore, in alpgblished study of 195,658 participants
from the UK Biobank who were followed up for 10.6ays, there was no evidence that saturated
fat intake was associated with incident CVD. Intcast, the substitution of polyunsaturated for
saturated fat was associated with higher CVD Wgkile there was also a positive relation of
saturated fat intake with all-cause mortality, théxame significant only with intakes well above
average consumption (37). Notably, the diet withldwest hazard ratio for all-cause mortality
comprised high fiber (10-30 g/day), protein (14-3086d monounsaturated fat (10—-25%)
intakes and moderate polyunsaturated fat (5% to)<af¥ starch (20% to <30%) intakes (37).

For dietary carbohydrate, as also shown in the PsliR&y, higher consumption (mainly from



starchy carbohydrates and sugar) was associatadavkigher risk of CVD and mortality (37). In
the context of contemporary diets, therefore, thodxservations would suggest there is little need
to further limit the intakes of total or saturafat for most populations. By contrast, restricting
carbohydrate intake, particularly refined carbolayes, may be more relevant today for
decreasing the risk of mortality in some individyad.g., those with insulin resistance and type 2
diabetes.

Most randomized trials of nutrient intake and dalievents have been relatively small in
size. Those that comprise the basis of dietarymesendations to limit dietary saturated fat were
conducted some 40 to 50 years ago (38), and hgweriamt methodological flaws, as described
further below. By far, the largest contemporarydgtis the WHI (Women’s Health Initiative)
trial in nearly 49,000 women, which demonstrateat tisk for heart attack and stroke was
unaffected after 8 years on a low-fat diet in whselturated fat provided 9.5% of total daily
energy intake (39). The PREDIMED (Prevencion coet®Mediterranea) trial compared a
standard low-fat diet to a Mediterranean diet sepmanted with nuts or olive oil. Despite an
increase in total fat intake by 4.5% of total erygfigcluding slightly higher saturated fat
consumption), major cardiovascular events and deatk significantly reduced compared to the
control group (40). Furthermore, in the six moserd systematic reviews and meta-analyses of
randomized trials (many of which were small anddrarted more than 40 years ago but still
comprise the core of current dietary recommendajjaesults showed that replacing saturated
fat with polyunsaturated fat has no significaneetfon coronary outcomes (the primary outcome
of these trials) or on total mortality (5,7,41).devif these analyses were to be challenged, for
example, based on the criteria for study seleaioother lines of evidence (42), an important

possibility to consider is that an apparently lowsk of CVD with substitution of SFA by



polyunsaturated fatty acids could be attributed pmssible beneficial effect of polyunsaturated
fatty acids and not necessarily to an adverse teffeSFAs.

There is, therefore, a large body of informatioat ttaises questions regarding
conventional beliefs about SFAs and clinical outesnTaken together, the evidence from both
cohort studies and randomized trials does not stipip® assertion that further restriction of
dietary saturated fat will reduce clinical events.

L ow-density lipoprotein-cholester ol and other biomar kersfor assessing the effects of
dietary saturated fat on cardiovascular risk

Plasma low-density lipoprotein (LDL)-cholesterohcentration has traditionally been
used to assess risk for CVD and to monitor thecesfef lifestyle and pharmacological
interventions (43). However, there are weakness#sei argument that a reduction in CVD risk
with saturated fat restriction can be inferred fribra well-documented capacity of SFAs to
increase LDL-cholesterol when substituted for chsfvate orcis-unsaturated fatty acids (12).
First, while it is evident that LDL particles playcausal role in the development of CVD (44,45)
and that, in general, there is an inverse relatipnsetween change in LDL-cholesterol and
CVD benefit (45), a diet-induced reduction of LDhedesterol cannot be inferred to result in
CVD benefit without having the means for a compreige assessment of other biologic effects
that may accompany this reduction. In this regitid,notable that post-menopausal estrogen
plus progestin therapy (46) and treatment with swaholesteryl ester transport protein
inhibitors (47) result in no CVD benefit despitdstantial LDL-cholesterol lowering. In
contrast, Mediterranean-style dietary interventigduce CVD risk without significantly
reducing LDL-cholesterol (48,49). Moreover, inhibit of sodium-glucose cotransporter type 2

reduces CVD events despite an increase in LDL-cherdel levels (50).

10



A second reason that a reduction in LDL-cholesterdliced by dietary saturated fat
restriction cannot be inferred to yield a proparébreduction in CVD risk is the observation that
the lower LDL-cholesterol concentration primarigflects reduced levels of large LDL particle
subspecies (51) which are more cholesterol-enribthave much weaker associations with
CVD risk than smaller LDL particles (44,52) and ace reduced by saturated fat restriction in
the majority of individuals (51). Moreover, decre@ssaturated fat intake also lowers the levels
of high-density lipoprotein (HDL)-cholesterol, ahdnce has a relatively small effect on the ratio
of total to HDL-cholesterol (12), which is a robusarker of CVD risk (53). Thus, the potential
benefit of dietary restriction of saturated fat kcbie substantially overestimated by reliance on
the change in LDL-cholesterol levels alone. Thisaan is highlighted in several randomized
trials where changes in total and LDL-cholesteidIrtbt inform the impact of changes in dietary
SFAs on CVD risk (5,39,40). Likewise, the PURE stueported that the observed hazard ratio
for the association between saturated fat and Cxédhts does not fit a relation with plasma
LDL-cholesterol, but rather, is related to theoaif apolipoprotein B (ApoB) to ApoA1l, which
is a measure related to atherogenic particle cdraten (ApoB is found in LDL and very low-
density lipoprotein particles, and ApoAl is foumdHDL particles); in fact, this ratio is lower in
those with higher saturated fat intake (35). Festhreasons, dietary effects on CVD risk may
not be reliably reflected by changes in LDL-chadest levels, and it is, therefore, imperative to
develop and implement more valid surrogate markerassessing CVD risk and monitoring
diet-induced effects in research and clinical pcact
Modulation of the health effects of saturated fat by dietary car bohydrate intake and insulin

resistance
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Insulin-resistant states like the metabolic syndepprediabetes, and type 2 diabetes
affect over 100 million people in the US (54). Ilsuesistance manifests functionally as
carbohydrate intolerance. For example, insulinstasit lean subjects demonstrate impaired
skeletal muscle glucose oxidation, increased hegatiovo lipogenesis, and atherogenic
dyslipidemia after a high-carbohydrate meal (5%efefore, an individual with insulin
resistance has a higher propensity to convert tgdrate to fat, which will further exacerbate
the insulin-resistant phenotype. In addition tond&ad risk factors (e.g., high triglyceride and
low HDL-cholesterol concentrations, increased @radiposity, hypertension, hyperglycemia,
hyperinsulinemia), this phenotype also includesdased circulating levels of SFAs and
lipogenic fatty acids, such as palmitoleic acid Q).

It is important to distinguish between dietary sated fat and circulating SFAs. Whereas
several reports show no association between inedaasake of SFAs and risk for chronic
disease (6,29), individuals with higher circulatiegels of even-chain SFA (particularly
palmitate, C16:0) have increased risk of developmegabolic syndrome (56), diabetes (57-59),
CVD (59), heart failure (60), and mortality (61)otdbly, however, the amount of circulating
SFAs in blood is not related to saturated fat iathkm the diet but instead tends to track more
closely with dietary carbohydrate intake. For exemnan increase in saturated fat consumption
by 2—3-fold either has no effect or decreases séguats of SFA in the context of lower
carbohydrate intake (62-65). Decreased accumulaficirculating SFA in response to diets
lower in carbohydrate and higher in saturatedsaartially mediated by lower production
(throughde novo lipogenesis), but also increased clearance. Laweteydrate diets consistently
increase rates of whole-body fat oxidation, whintiudes the preferred use of SFA for fuel.

Thus, the combination of greater fat oxidation attdnuation of hepatic lipogenesis could

12



explain why a higher dietary saturated fat intakassociated with lower circulating SFA in the
context of low carbohydrate intake.

Although palmitic acid is the primary fatty acidogiuct ofde novo lipogenesis, serum
palmitoleic acid ¢is-C16:1n7), a product of stearoyl CoA desaturasetiVity, is a better proxy
of lipogenesis because of its low content in tiet dnd the fact that it increases proportionally
more than any other fatty acid when carbohydratemnverted to fat (66). Several studies
support a close link between increased dietaryatasdirate intake and increased palmitoleic acid
levels, an effect that is independent of changeegeiight and saturated fat intake (62,63,65).
Beyond its importance as a surrogated®novo lipogenesis, palmitoleic acid levels in blood
and adipose tissue are consistently and strongtgdi to obesity and hypertriglyceridemia (67),
hyperglycemia and type 2 diabetes (59,68,69), liadute (60,70), and CVD mortality (61,70).
Furthermore, in non-diabetic men, higher propodiohpalmitoleic acid in erythrocyte
membranes were significantly associated with warggaf hyperglycemia (68) and
development of metabolic syndrome (56,71). In tiRd@ (Atherosclerosis Risk in
Communities) study, the highest quintile of plagghaspholipid palmitoleic acid was associated
with a 67% greater risk of incident heart failué®)Y and 52% greater risk of incident ischemic
stroke (72) compared with the lowest quintile. Rartore, in the Physician’s Health Study, an
increase in plasma palmitoleic acid concentratipi Btandard deviation was associated with a
19% greater odds ratio for coronary artery dis¢@3gand a 17% greater odds ratio for
congestive heart failure (70). Clearly, the impafatlietary SFA on health must consider the
important role of carbohydrate intake and the ulyteg degree of insulin resistance, both of

which significantly affect how the body processatugted fat. This intertwining aspect of
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macronutrient physiology and metabolism has beesistently over-looked in previous dietary
recommendations.
Tailoring dietary saturated fat intake to cardiometabolic risk

Despite many decades of nutrition research in hgraad animal models, the scientific
community has not yet reached a consensus on ftaeliet” (i.e., low-fat, Mediterranean) that
achieves optimal metabolic health for all. The hydieterogeneous outcomes of dietary
intervention studies suggest that some individhaige better outcomes for specific diets than
others. Therefore, the objective should be to masdh person to their individual best diet,
which is culturally appropriate (74). Conversely,discussed above, the once apparently tight
link between dietary SFAs and CVD appears to bedomng as a result of mounting evidence
that casts doubt on previously established belidst of the debate relates to the role of
variation in specific food sources of SFAs, and painter-individual variation in the biologic
and clinical effects of these SFAs. Some reseavehthe last two decades has shifted towards
the identification of genetic factors underlying tinter-individual differences in response to
different dietary fats. The information emergingrfr these studies suggests that genetic variants
may modulate the relationship between dietary S&ifxsCVD-related biomarkers (75). In some
cases, dietary SFAs enhance the association ofigeaeants predisposing to increased CVD
risk. This has been shown for the apolipoprote(AEOE) gene, one of the most extensively
researched loci in relation to CVD risk. Specifigatarriers of the less common APOE4 allele
have repeatedly shown greater fasting plasma lgsgonses to saturated fat in the diet than non-
APOEA4 carriers (76,77) and similar findings haverbeeported in the postprandial state (78).
These gene by diet interactions have been demtestia other CVD risk factors as well, such

as obesity. For example, by using a weighted gemnisi score calculated on the basis of 63
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obesity-associated variants in two populationsGkaetics of Lipid Lowering Drugs and Diet
Network (GOLDN) and the Multi-Ethnic Study of Atteesclerosis (MESA), it was shown that
dietary SFA intake interacts with the genetic 8skre to modulate body mass index (79). In
brief, the association between high SFA intake @ebity was apparent only in subjects in the
upper tertile of the GRS, i.e. those with stronggmetic predisposition to obesity may be more
sensitive to dietary SFA (79). In terms of singleus by diet interactions, one of the most
studied ones is the APOA2. A putative functionaiasmt -265T>C (rs5082) within the ApoA2
promoter gene has shown consistent interactiorts saiturated fat intake to influence the risk of
obesity. Specifically, saturated fat intake is agsed with higher average body mass index
exclusively in subjects who are homozygotes forlélss common T allele, but not in those who
are heterozygotes for the T allele or homozygateshfe most common C allele (80,81). The
potential mechanism for this ApoA2 by saturatedritgraction has been elucidated recently
(82). Nevertheless, based on current evidenceiretiné absence of randomized dietary
intervention studies, the effects of this and otfezre-diet interactions (79,83,84) cannot be
attributed specifically to SFAs; it is equally ligghat the observed effects are related to the
overall influence of foods or dietary patterns emmihg the SFAs. The current information
suggests that genetic predisposition modulateagbeciation between saturated fat intake and
cardiovascular risk. It is this segment of the papaon (the SFA-sensitive) where the reduction
in SFA may be beneficial and could therefore bemamended.

Obesity and type 2 diabetes are major contributotke risk of CVD, and recent
evidence suggests that the optimal diet for wetghtrol and glycemic control depends in part
on the individual's “carbohydrate tolerance” (8®%hich in turn is determined by insulin

resistance and insulin secretion capacity. Carba@tgdolerance may also vary with level of
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exercise/fitness of the individual. Whereas dietedr in total and saturated fat may be optimal
for carbohydrate tolerant (i.e. insulin sensitive)ividuals, a diet lower in carbohydrates and
higher in fiber and fat seems to be optimal foigyas with type 2 diabetes (86). In the US, the
prevalence of prediabetes among adults was 372018 and is projected to rise to 40 % in
2030 (87), accompanied by slight increases in thegdence of type 2 diabetes. This novel
information emphasizes the need for a more pergmoband food-based approach in
recommending levels of total and saturated fabhéndiet.
From single nutrientsto whole foods: lessons from ancestral diets, food processing, and the
food matrix

The overall health effect of fats and oils depemwishe content of SFAs and unsaturated
fatty acids but is not merely the sum of the efaaftthe individual lipid components. Rather, it
depends on the interacting effects from naturadlyuoring components and from unhealthy
compounds introduced by processing. These companedsften overlooked in the assessment
of health effects of oils and fats, and the riskhas is illustrated by thetf'ans-fat” story. The
substitution of traditional dairy fats with vegelabils has a long history, dating back at least to
the 1870s US legislation, and has driven the sidva unsaturated fat debate (88). By the
1950s, the major component of2entury vegetable oils, dietary polyunsaturatadléic acid,
was widely recognized to decrease plasma choléstengentrations, and hence surmised to
have a more favorable effect on atherosclerosis shturated fat, which could raise cholesterol.
However, despite its high content of SFASs, daitydi@es not promote atherogenesis (89). The
ability of adult humans to digest the sugar unitumilk, lactose, evolved separately numerous
times (90,91), demonstrating unequivocally thataheestors of many modern humans required

continuous dairy consumption for survival to reproiive age. Bovine (92), goat (93) and sheep
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(94) domestication started around the same tinmytsl,000 years ago, coinciding with the
emergence of lactase persistence, i.e., the atulithgest lactose. The saturated fat of the meat
of these species was likely a major contributdniuman diets, along with fruit oils — where
available — such as olive, avocado, and palmouallih polyunsaturated fat, with the latter also
being high in saturated fat. Coconut fat would hlagen the only abundant lipid-rich seed, and
that too is highly saturated. Seed oil consumptimch now dominates the food supply, would
have been negligible back then and until the adeemdustrialized fat extraction in recent
centuries. These historical facts demonstrateséiatated fats were an abundant, key part of the
ancient human diet.

By the 1970s, many experimental studies in anin@dets were conducted with dietary
coconut oil of unspecified origin, which reliablsiuwsed dramatic increases in hepatic and blood
cholesterol in rodents; this was taken as evidématedietary SFAs are inherently atherogenic
(95,96). However, coconut oils of the era were ligiaghly processed and often fully
hydrogenated. Recent gentle preparation methotts ‘yiegin” coconut oils (97) that do not
raise LDL-cholesterol compared to customary dietslaave similar effects compared to olive
oil in humans (98). Studies in rodents demonstrdtatiwhile highly processed (“refined-
bleached-deodorized”) coconut oil raises serumedtetol, virgin coconut oil does not (99,100).

In the last decade, the concept of process contantsrgenerated from high-temperature
treatment of oils in the presence of trace metassdome to the fore. The triglyceride derivatives
glycidyl and monochloropropandiol (MCPD) esters @exmon contaminants, well-studied for
their carcinogenic properties in rodents (101).dRdy, the metabolic effects of virgin coconut
oil and of oil processing on human liver cells wemeestigated. A method was developed to

enable cells to take up whole oil, including pracesntaminants. Oil was passed through
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successive stages of processing, starting withi@n oil, which was then subjected to (b) free
fatty acid removal, (c) bleaching, and (d) deodaticn. With increasing processing, cellular
cholesterol increased, HMGCOA reductase expressmpased and the activity of the
cholesterol oxidation enzyme CYP7AL decreased. fonwemical alteration in the oil was the
increase in both glycidyl and MCPD esters. Remdykataldition of either glycidol or MCPD to
virgin coconut oil partially recapitulated the effe on cellular cholesterol metabolism (102).
Experimental rodent studies using oxidation-resisiaoleic acid, dideuterated in tles allylic
position, support the hypothesis that oxidatiordpiis and not specific fatty acids cause plague
formation in transgenic mouse models (103).

Human studies that assume all foods high in sadratts are similarly atherogenic
come, in many cases, from an era prior to the mr@tiog of process contaminants. The
American Heart Association recently issued a Peggidl Recommendation to avoid saturated
fats, based on studies conducted in the 1960shenti70s (38). Three studies conducted in
Europe (Oslo, Norway (104); London, UK (105); anels$thki, Finland (106)) and one study
conducted in the US (Los Angeles (107)) comprisedcbre evidence chosen on the basis of the
quality of study design, execution, and adherefbese studies were purported to have
compared high saturated with high polyunsaturaaédiets over at least a 2-year period, and to
have included biomarkers of adherence and colledidCVD events. Key quality parameters
were that the diets did not incluttans unsaturated fats as a major component and that the
dietary intake of the comparison groups was colerioHowever, careful inspection of the diets
indicates that this was not the case. First, gbrtigydrogenated fish oils were major constituents
of European (and Canadian) margarines and shog®wifithis era (88). Hydrogenated fish oils

are rich in a wide array ¢fans monoenes and polyenes not present in partiallydgeirated
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vegetable oils (108). The Oslo study, for instarsglicitly estimated intake of partially
hydrogenated fish oil at 40-50 g per day (109) 08dly, the three European studies all used
customary diets as comparisons (105-107,110), wierie substituted for experimental diets.
One can thus infer that the European diets are tégtolyunsaturated fats agaitrgns-plus-
saturated fats, which means that any effects desticannot be assigned to saturated fats alone.
Dropping these three studies from a meta-analgsigels the US trial, which did not find a
significant difference between groups for its pniyn@VD outcome (38). We consider this to be
the proper interpretation of these studies.

Taken together, these observations strongly suppetonclusion that the healthfulness
of fats is not a simple function of their contemtSFA but a result of the various components in
the food, often referred to as the “food matrix’hM the various SFAs have distinct metabolic
roles (9,11,12), ample evidence is available fresearch on specific foods that other food
components and the food matrix likely dominate aaturated fat content, as discussed in the
following section. Recommendations should, theefemphasize food-based strategies that
translate for the public into understandable, irst and robust recommendations for healthy
dietary patterns.

Health effects of differing food sour ces of saturated fatty acids
Yogurt and cheese

Dairy is the major source of SFA in most diets, argjor dietary guidelines recommend
low-fat or fat-free versions of dairy foods to [inSFA intake. However, food-based meta-
analyses consistently find that cheese and yogtakes are inversely associated with CVD risk
(11,111-113). Whole-fat dairy may also be protextigainst type 2 diabetes (3,114,115). Using

circulating biomarkers of dairy intake i.e., plasteeels of C17:0, an inverse association with
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CHD was found (116); whereas for other biomark&Bs(@ and 17:0, but also the natural
ruminanttrans-16:1n7), a neutral association was found withl totartality (11). Moreover, a
pooled individual-level analysis of nearly 65,008 ipants across international cohorts found
that plasma and tissue levels of odd-chain SFAX157:0) and natural ruminatians fatty
acids frans-16:1n7), all of which reflect dairy fat consumptjavere associated with lower risk
of diabetes (117). Cheeses and yogurts consisiroplex food matrices and major components
include different fatty acids, proteins (whey arde&in), minerals (calcium, magnesium,
phosphate), sodium, and phospholipid componentsilaffat globule membrane (115). Yogurt
and cheese also contain probiotics and bacteqatiguiced bioactive peptides, short-chain fatty
acids, and vitamins such as vitamin K2. The comptetrix and components of dairy may
explain why the effect of dairy food consumption@vD cannot be explained and predicted by
its content in SFA.
Eggs

Eggs can be a significant contributor to total Sktake. However, eggs are also
nutrient-dense, providing important nutrients tti not widely available in other foods. Well-
designed prospective, population-based studies vwéded conflicting evidence on the
relationship between egg consumption and CVD (1113,lbut a number of meta-analyses have
found that higher egg consumption is not associaigdrisk of CHD and may be associated
with lower risk of stroke (120,121). Moreover, ramtized controlled trials have found neutral
or beneficial effects on cardiometabolic risk maski@ people with prediabetes and type 2
diabetes (122).

Dark chocolate
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Dark chocolate contains stearic acid (C18:0), wihiak a neutral effect on CVD risk.
However, chocolate contains other nutrients that beamore important for CVD and type 2
diabetes than its SFA content. Experimental anémisional studies suggest that dark
chocolate has multiple beneficial health effects|uding potential anti-oxidative, anti-
hypertensive, anti-inflammatory, anti-atherogeaiag anti-thrombotic properties, as well as
preventive effects against CVD and type 2 diabgit28-125).

Meat

Although intake of processed meat has been asedaiath increased risk of CHD,
intake of unprocessed red meat is not, which indgcthat the SFA content of meat is unlikely to
be responsible for this association (126). A metahsis found no differences in
cardiometabolic risk factors between groups ofvittlials consuming mones fewer than 0.5
daily servings of meat (127). Prospective cohartlists also depict stronger associations of
processed meat consumption, compared to unprocesg@aeat consumption, in relation to type
2 diabetes. Another meta-analysis found that pssremeat gave rise to a 19% higher risk of
type 2 diabetes but red meat consumption was goifisiantly associated with diabetes (127).
The collective evidence from randomized controtigals suggests there is low- to very-low-
certainty evidence supporting that diets restriatectd meat have a significant effect on major
cardiometabolic outcomes (128). However, one arsafgsind a small but significant association
of processed meat, unprocessed red meat, andypooiftsumption with a higher risk of incident
CVD, and a mild association of processed or unmsee red meat with a higher risk of all-cause
mortality (129). Nevertheless, meat is a major sewf protein, bioavailable iron, minerals and
vitamins. In modest amounts, unprocessed red nogatitutes an important part of the diet for

the elderly and low-income populations in many digwe@g countries (130).
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Resear ch gaps and directions

The dietary recommendation to reduce intake of SK#{sout considering specific fatty
acids and food sources is not aligned with theeturevidence base. As such, it may distract
from other more effective food-based recommendatiand may also cause a reduction in the
intake of nutrient-dense foods (such as eggs, dang unprocessed meat) that may help
decrease the risk of CVD, type 2 diabetes, and otble-communicable diseases, but also
malnutrition, deficiency diseases and frailty, pautarly among “at-risk” groups. Furthermore,
based on several decades of experience, a fodusabiSFA has had the unintended effect of
misleadingly guiding governments, consumers, addstry toward foods low in SFA but rich in
refined starch and sugar. All guidelines shouldstber the types of fatty acids and, more
importantly, the diverse foods containing SFA, whimay possess harmful, neutral, or even
beneficial effects in relation to major health artes (Figure 2). We strongly recommend a
more food-based translation of how to achieve dtlnediet and reconsidering the guidelines on
reduction in total SFA. Indeed, a focus on gentlycpssed foods is more likely to emerge as a
key factor until much more is known about the Heaffects of specific process contaminants so
that their levels can be minimized.
Conclusions

The long-standing bias against foods rich in sédgréats should be replaced with a view
towards recommending diets consisting of healtlogléo What steps could shift the bias? We
suggest the following measures: 1) Enhance thegsibinderstanding that many foods (e.qg.,
whole-fat dairy) that play an important role in rtieg dietary and nutritional recommendations
may also be rich in saturated fats. 2) Make thdipalware that low-carbohydrate diets high in

saturated fat, which are popular for managing bedight, may also improve metabolic disease
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endpoints in some individuals, but emphasize teatth effects of dietary carbohydrate — just
like those of saturated fat — depend on the amadype, and quality of carbohydrate, food
sources, degree of processing, etc. 3) Shift féraums the current paradigm that emphasizes the
saturated fat content of foods as key for heattlonte that centers on specific traditional foods,
so that nutritionists, dietitians, and the pubbo @asily identify healthful sources of saturated
fats. 4) Encourage committees in charge of makiagronutrient-based recommendations to
translate those recommendations into appropriateyrally sensitive dietary patterns tailored to

different populations.
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Highlights

* The US Dietary Guidelines recommend the restrictibsaturated fatty acid (SFA) intake to
less than 10% of calories to reduce cardiovasditsaase (CVD).

» Different SFAs have different biologic effects, whiare further modified by the food matrix
and the carbohydrate content of the diet.

» Several foods relatively rich in SFASs, such as wkHal dairy, dark chocolate and
unprocessed meat, are not associated with incré2gBdor diabetes risk.

» There is no robust evidence that current populati@e arbitrary upper limits on saturated

fat consumption in the US will prevent CVD or redunortality.
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FigureLegends

Figurel. Saturated fatty acid profiles of major food sources, i.e., whole-fat cheese, whole-
fat milk, and red meat. These data indicate that food sources of satufatembntain different
proportions of short-, medium-, and long-chain ssted fatty acids; these fatty acids have
diverse physical and chemical characteristics,diffiering effects on various blood lipids and
lipoproteins (9,11,12). Data from the US Departn@griculture, FoodData Central
(https://fdc.nal.usda.gov/).

Central illustration: Available evidence discussethis manuscript supports the rationale for

replacing dietary saturated fat targets with foaddul guidelines for saturated fat intake.
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Tablel. Major naturally occurring saturated fatty acids.

Common or Carbon chain

Abbreviation M ajor dietary sources
systematic name length

4:0 Butyric Short Dairy foods

6:0 Caproic Short Dairy foods

8:0 Caprylic Medium Dairy foods, coconut and palm

kernel oils

10:0 Capric Medium Dairy foods

12:0 Lauric Medium Coconut milk and oil

14:0 Myristic Long Dairy foods

15:0 Pentadecanoic Long Red meat, dairy foods, oils

16:0 Palmitic Long Red meat, dairy foods, palm oil

17:0 Heptadecanoic Long Red meat, dairy foods

18:0 Stearic Long Dairy foods, meat, chocolate

C15:0 and C17:0 are predominantly obtained frond$osources, whereas circulating levels of all other

saturated fatty acidse influenced by both dietary intake and endogsmoetabolism.
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Previous Advice: Restrict SFA intake to reduce risk of CVD

Current Evidence Base: Health effects of SFAs depend on the interacting effects from naturally
occurring food components and from unhealthy compounds introduced by processing

Whole-Fat Dairy Unprocessed Red Meat

Complex food matrix
with high SFA content No
but also other nutrients increased

and non-nutritive CVD or
Dark Chocolate components (e.g. proteins, diabetes risk
micronutrients,
phospholipids, probiotics)

New recommendations should emphasize food-based strategies that
translate for the public into understandable, consistent, and robust
recommendations for healthy dietary pattens




