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Abstract

Research of the past decade has increased our understanding of the role adipose tissue plays in health and disease. Adipose tissue is now
recognized as a highly active metabolic and endocrine organ. Adipocytes are of importance in buffering the daily influx of dietary fat and exert
autocrine, paracrine and/or endocrine effects by secreting a variety of adipokines. The normal function of adipose tissue is disturbed in obesity, and
there is accumulating evidence to suggest that adipose tissue dysfunction plays a prominent role in the development and/or progression of insulin
resistance. Obese individuals often have enlarged adipocytes with a reduced buffering capacity for lipid storage, thereby exposing other tissues to
an excessive influx of lipids, leading to ectopic fat deposition and insulin resistance in situations where energy intake exceeds energy expenditure.
In addition, adipose tissue blood flow is decreased in obesity. This impairment may affect lipid handling in adipose tissue and, thereby, further
contribute to excessive fat storage in non-adipose tissues. On the other hand, adipose tissue hypoperfusion may induce hypoxia in this tissue.
Adipose tissue hypoxia may result in disturbances in adipokine secretion and increased macrophage infiltration in adipose tissue, events that are
frequently observed in obesity. In this review, it is discussed how enlarged adipocytes, an impaired blood flow through adipose tissue, adipose
tissue hypoxia, adipose tissue inflammation and macrophage infiltration are interrelated and may induce insulin resistance.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The prevalence of obesity has reached epidemic proportions
globally, with more than 1 billion adults being overweight, of
whom at least 300 million are obese [1]. This poses a major
public health issue, since obesity is a major contributor to the
global burden of chronic diseases. Abdominal obesity plays a
central role in the metabolic syndrome and is a major risk factor
for chronic diseases, such as type 2 diabetes mellitus and
cardiovascular disease [2]. Not surprisingly, the prevalence of
obesity-related disorders is also increasing at an alarming rate.
In fact, obesity is the most important risk factor for the
development of type 2 diabetes [3], which is further stressed by
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the fact that obesity, body fat distribution and weight gain
throughout adulthood are important predictors of diabetes [3,4].
Furthermore, adiposity is associated with insulin resistance
even over relatively normal ranges of body fatness. Although
the relationship between obesity, insulin resistance and
cardiovascular disease is well-recognized [5], the mechanisms
involved remain relatively poorly understood.

Adipose tissue dysfunction plays a crucial role in the
pathogenesis of obesity-related insulin resistance and type 2
diabetes, as has recently been reviewed [6–8]. The aim of this
review is to discuss the evidence that enlarged adipocytes, an
impaired adipose tissue blood flow (ATBF), adipose tissue
hypoxia, local inflammation in adipose tissue and adipose
tissue macrophage infiltration seem to be interrelated and may
lead to disturbances in adipokine secretion, lipid overflow, and
excessive fat storage in non-adipose tissues, which together
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Fig. 1. The normal function of adipose tissue is to buffer the daily influx of dietary fat.When the buffering capacity for lipid storage in adipose tissue is decreased, as in obesity
(when the fat cells are overloaded) and lipodystrophy (when the adipose tissue necessary to perform such a function is lacking), other tissues are exposed to an excessive influx
of fatty acids and TAG, which in turn may result in TAG storage that interferes with insulin sensitivity (skeletal muscle and liver) and insulin secretion (pancreas).
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may result in the development and/or progression of insulin
resistance.

2. Adipose tissue as lipid storage depot

Obesity is the result of an imbalance between energy intake
and energy expenditure. When energy intake exceeds energy
expenditure the energy surplus is stored in various organs.
Adipose tissue is the main lipid storage depot in our body, and is
of crucial importance in buffering the daily influx of dietary fat
entering the circulation. Adipose tissue exerts its buffering
action by suppressing the release of non-esterified fatty acids
into the circulation and by increasing the clearance of triacyl-
glycerol (TAG). In obesity, adipose tissue is overloaded with
TAG and the buffering capacity for lipid storage in adipocytes
is decreased, especially in the postprandial state [9]. It could
be argued that TAG storage in adipocytes of obese subjects
has reached a near-maximum level and that these adipocytes
are therefore not able to effectively store even more lipids.
Fig. 2. LPL andHSL act on circulating TAG-rich lipoprotein particles and stored TAG,
into the circulation or are re-esterified. A decreased buffering capacity for lipid storag
muscle, liver, and pancreas. In addition to lipid accumulation in these tissues, this lead
and decreased insulin clearance by the liver. Together with disturbances in skeletal
resistance, such as glucose intolerance, hyperinsulinemia, and hyperlipidemia. LPL, li
fatty acids; VLDL, very low-density lipoprotein.
Consequently, non-adipose tissues are exposed to an excessive
influx of TAG and fatty acids, which could lead to accumulation
of these lipid fuels in the form of TAG when the capacity to
oxidize fatty acids is not sufficient (Fig. 1). A large number of
observations suggest that TAG accumulation in non-adipose
tissues, such as skeletal muscle [10–12], pancreatic islets [13]
and the liver [14,15], may play an important role in the
development of insulin resistance and/or impaired insulin
secretion in obese individuals. In addition, increased delivery
of fatty acids to the liver leads to higher glucose production
[16–18], elevated hepatic very low-density lipoprotein
(VLDL)–TAG output [19], and reduced insulin clearance by
the liver [20–22], resulting in conditions associated with insulin
resistance, such as glucose intolerance, hyperlipidemia, and
hyperinsulinemia, respectively [23] (Fig. 2).

The importance of the buffering function of adipose tissue is
further emphasized by the adverse metabolic consequences in
situations where adipose tissue is lacking. A deficiency of adi-
pose tissue, as in lipodystrophy, is also associated with insulin
respectively, to release fatty acids. The fatty acids that are released are transported
e in adipose tissue results in an increased flux of fatty acids and TAG to skeletal
s to an increased liver glucose production, elevated hepatic VLDL–TAG output,
muscle glucose metabolism, these events result in conditions related to insulin
poprotein lipase; HSL, hormone-sensitive lipase; TAG, triacylglycerol; FFA, free
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resistance and a high incidence of type 2 diabetes [24]. Mice
models that lack adipose tissue are severely insulin resistant and
have an elevated lipid content in skeletal muscle and liver [25].
Surgical implantation of adipose tissue from healthy mice into
these lipodystrophic animals reduced TAG content in these
tissues, and reversed insulin resistance in a dose-dependent
manner [26]. Thus, both excess adipose tissue and too little (or
complete absence of) adipose tissue may elicit insulin
resistance. In other words, an impaired capacity to store the
daily influx of dietary fat in adipose tissue may result in ectopic
fat deposition and insulin resistance in situations where energy
intake exceeds energy expenditure.

3. Importance of adipose tissue blood flow in lipidmetabolism

Tissue-specific regulation of blood flow is required to meet
local metabolic and physiological demands under varying
conditions. Blood flow may be an important regulator of
metabolism in both muscle [27] and adipose tissue [28–30].
There is evidence that disturbances in adipose tissue blood flow
(ATBF) may affect adipose tissue lipid handling, thereby
contributing to an increased lipid supply to non-adipose tissues,
which in turn may lead to ectopic fat deposition as discussed
above. In lean, healthy individuals, ATBF is responsive to
nutrient intake [31–36]. The ATBF response to nutrient intake
may be of great importance in the regulation of metabolism by
facilitating signalling between adipose tissue and other tissues
[37]. ATBF controls the supply of circulating TAG-rich
lipoprotein particles to adipose tissue lipoprotein lipase [30],
which is responsible for hydrolysis of these particles into fatty
acids and glycerol. It has been demonstrated that both fasting
ATBF [38–42] and ATBF responsiveness to nutrients [40,41]
are reduced in obesity. An impaired postprandial ATBF seems
to be associated with insulin resistance [40,43], which may
partly be explained by a decrease in TAG clearance in the
postprandial period. Indeed, it has been reported that plasma
TAG extraction in adipose tissue is decreased in obese
compared to lean subjects both in the fasting and postprandial
state [44]. Further evidence supporting a role for ATBF in lipid
metabolism comes from a study where ATBF was manipulated
pharmacologically to examine the effects of ATBF on adipose
tissue metabolism. Intravenous adrenaline infusion, resulting in
an elevation of ATBF, increased the extraction of TAG in
adipose tissue [30]. Thus, disturbances in ATBF regulation may
contribute to a reduced TAG clearance, lipid overflow and lipid-
induced insulin resistance. On the other hand, there is evidence
that insulin resistance may lead to vascular dysfunction, since
obesity is associated with impaired endothelium-dependent
vasodilatation in various vascular beds in response to insulin
[45–47]. In other words, although cause and consequence
cannot be clearly defined based on available data, it is evident
that ATBF and insulin resistance are related.

4. Link between adipocyte size and insulin resistance

Enlargement of adipocytes is frequently observed in obesity
and has also been demonstrated in pre-diabetic individuals and
in type 2 diabetics [48–50]. The increased adipocyte size may
represent a failure in the recruitment of new adipocytes due to
impaired differentiation, which may have a genetic origin [51].
An impaired adipocyte differentiation appears to be a precipi-
tating factor in the development of type 2 diabetes [49,50]. In
accordance with this, it has recently been shown that fat cell
enlargement is an independent marker of insulin resistance [52].
In fact, enlarged abdominal subcutaneous adipocyte size and
insulin resistance appear to be independent and additive
predictors of the development of type 2 diabetes [50].

One potential link between adipocyte size and the develop-
ment and/or progression of insulin resistance could be the
release of fatty acids from adipose tissue. Mobilization of fatty
acids from stored adipocyte TAG stores is mediated by
hormone-sensitive lipase [53] and the recently characterized
adipose triglyceride lipase [54]. Fat mobilization is strongly
inhibited by insulin. It has been suggested that the enlarged
adipocytes of obese subjects may be resistant to the antilipolytic
effect of insulin, which would result in an increased release of
fatty acids into the circulation. However, adipocytes from obese
and type 2 diabetic subjects appear to be equally responsive to
the antilipolytic effects of insulin compared to control subjects
despite the presence of systemic insulin resistance [55,56].
There are data to suggest that non-esterified fatty acids may not
provide the link between adipocyte size and insulin resistance
[50,52], but it is important to note that these studies measured
fasting rather than postprandial fatty acid concentrations. The
latter might play a more important role in the development of
insulin resistance. A placebo-controlled, double-blind cross-
over study using a thiazolidinedione (TZD) insulin-sensitizer
provided evidence to suggest that systemic insulin concentra-
tion is an important determinant of fatty acid release from
adipose tissue [57]. Since adipose tissue appears to be normally
insulin-responsive with respect to inhibition of lipolysis in
obese and type 2 diabetic subjects, hyperinsulinemia as often
present in insulin resistant conditions will decrease fasting
lipolysis. On one hand, this might be a mechanism to protect
subjects with excess adipose tissue mass against the detrimental
effects of a high circulating fatty acid concentration [58]. On the
other hand, decreased adipocyte lipolysis in hyperinsulinemic
conditions may contribute to a continuous increase in adipocyte
size, which may further impair the dynamic function of adipose
tissue to store lipids in order to accommodate an increased
energy supply. Thus, it may be that an impaired buffering
capacity for lipid storage in the postprandial state and the
consequent prolonged elevation of non-esterified fatty acid
concentration [34], rather than an increased fasting adipocyte
lipolysis, provides the link between adipocyte size and insulin
resistance. Although adipocytes of insulin resistant subjects
seem to respond normally to insulin-induced inhibition of
lipolysis, both rodent and human in vitro studies have
demonstrated that enlarged adipocytes are insulin resistant
with respect to glucose uptake [52,59–63]. It has been shown
that changes in adipose tissue glucose uptake can have
secondary effects on whole-body glucose metabolism in rodents
[64], but it is unlikely that a reduced glucose uptake in enlarged
adipocytes in response to insulin directly causes systemic



Fig. 3. Adipocytes express and secrete a variety of substances, which may exert
autocrine, paracrine and/or endocrine functions. Several of these factors may
play an important role in the metabolic and hemodynamic disturbances observed
in obesity and insulin resistance. AGT, angiotensinogen; Ang II, angiotensin II;
ASP, acylation stimulating protein; LPL, lipoprotein lipase; PAI-1, plasminogen
activator inhibitor-1.
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insulin resistance, since skeletal muscle is responsible for more
than 80% of insulin-stimulated glucose disposal [65].

Further evidence supporting the importance of adipocyte size
in the development of insulin resistance and type 2 diabetes
comes from pharmacological studies. It has been demonstrated
that insulin-sensitizing TZDs, acting via the peroxisome
proliferator-activated receptor gamma (PPARγ), stimulate
adipocyte differentiation resulting in an increase in the number
of small adipocytes and a decrease in the number of large
adipocytes [66–68]. In addition to the formation of new
adipocytes from resident adipose tissue pre-adipocytes and
mesenchymal progenitor cells, it has recently been reported that
TZDs promote the trafficking of bone marrow-derived
circulating progenitor cells to adipose tissue and stimulate
their differentiation into adipocytes [69]. Finally, a novel non-
TZD PPARγ agonist has been shown to induce adipocyte
differentiation in Zucker fatty rats by stimulating PPARγ,
thereby increasing the number of small adipocytes, resulting in
improved insulin sensitivity [70].

In conclusion, one reason why enlarged adipocytes predis-
pose to the development of type 2 diabetes could be that
enlarged adipocytes may not be able to effectively store dietary
fatty acids due to defects in the ability of adipose tissue to
respond rapidly to the dynamic situation after meal intake by
switching between fatty acid uptake and release. As a
consequence, lipid overflow, ectopic fat deposition and insulin
resistance may develop. Another explanation for the observa-
tion that adipocyte hypertrophy is associated with insulin
resistance and the development of type 2 diabetes relates to the
secretory function of adipocytes, as will be discussed below.

5. Adipose tissue as an endocrine organ

Until recently, adipose tissue was seen as a passive organ for
energy storage. Research of the past decade has shown the
complex nature of adipose tissue and clearly demonstrated that
the traditional view of adipose tissue is no longer valid.
Adipocytes are now known to express and secrete a variety of
adipokines, which may act at both the local (autocrine and/or
paracrine) and systemic (endocrine) level. These factors among
others include cytokines, growth factors, adiponectin, resistin,
adipsin, leptin, acylation stimulating protein (ASP), plasmino-
gen activator inhibitor-1 (PAI-1), lipoprotein lipase (LPL),
and components of the renin–angiotensin system (Fig. 3)
[37,71,72]. Thus, in addition to the ability of adipose tissue to
modulate its own metabolic activities, adipocytes signal to other
tissues to regulate their metabolism. On the other hand, adipose
tissue expresses numerous receptors that allow it to respond to
afferent signals, such as hormones and signals from the central
nervous system. Since the recognition of adipose tissue as an
endocrine organ, there has been great interest in the possibility
that adipose tissue-derived factors may contribute to the
metabolic and hemodynamic disturbances seen in obesity and
insulin resistance.

It is well-established that chronic low-grade inflammation is
a hallmark of obesity, insulin resistance and type 2 diabetes
[73–76]. An interesting feature of the inflammatory response
that often emerges in the presence of obesity is that it appears to
be triggered and to reside predominantly in the expanded
adipose tissue [77–81]. Adipose tissue of obese insulin resistant
subjects is characterized by increased expression and/or
secretion of inflammatory molecules, including tumor necrosis
factor-α (TNF-α) [79,82–84], interleukin (IL)-6 [83–86], PAI-1
[87,88] and leptin [84,89–91]. Conversely, the insulin-sensi-
tizing factor adiponectin is downregulated in obese and insulin
resistant humans [92–94]. It has been demonstrated that adipo-
cyte size is an important determinant of adipokine secretion. A
variety of adipokines that may link obesity to insulin resistance
appear to be overexpressed in enlarged human and rodent
adipocytes [95–97]. Furthermore, it has very recently been
shown using cultured human adipocytes that large adipocytes
seem to differentially express pro-inflammatory and anti-
inflammatory factors compared to smaller adipocytes, with a
shift toward dominance of pro-inflammatory adipokines [98].
In agreement with these observations, weight-loss resulted in a
reduced adipocyte size and beneficial alterations in the secretory
pattern [99]. A similar change in adipokine expression and
secretion was observed when adipocyte differentiation was
stimulated using TZD treatment. The increased number of
small adipocytes and the decreased number of large adipocytes
in white adipose tissue of troglitazone-treated obese rats
resulted in normalization of the increased expression level of
TNF-α [68]. Interestingly, there are clear interactions between
adipokines. Downregulation of adiponectin expression may at
least partly be due to the action of adipokines that are
overexpressed in obesity, including TNF-α and IL-6
[78,100,101]. This in turn will affect the inflammatory
response, since adiponectin attenuates inflammatory responses
to multiple stimuli [102]. Furthermore, TNF-α has been
demonstrated to increase IL-6 production in 3T3-L1 adipocytes
[103,104]. Thus, TNF-α appears to play a pivotal role with
respect to the production of several other adipokines [105]. In
addition to adipose tissue, other metabolically active organs
may exert secretory effects. Human skeletal muscle seems to
produce and secrete IL-6 [106–109] and angiotensinogen [39].
Furthermore, it has been suggested that IL-6 may stimulate
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hepatic production of C-reactive protein [76,110,111]. There-
fore, non-adipose tissues may also contribute to the inflamma-
tory response in obesity.

6. Importance of inflammation in insulin resistance

Studies in the past decade left little doubt that inflammatory
pathways are critical in the mechanisms underlying insulin
resistance and type 2 diabetes, at least in cultured cells and
animal models [112–116]. Accumulating evidence suggests
that this may also be the case in humans. Much progress has
been made in identifying mechanisms by which the inflamma-
tory response may cause insulin resistance. Dysregulation of
adipokine production and/or secretion may both have local
and systemic effects. First, it has been shown that TNF-α
inhibits the differentiation of human adipocyte precursor cells
and 3T3-L1 cells via inhibition of two master regulators of
adipocyte differentiation, namely the transcription factor
CCAAT/enhancer binding protein-α and PPARγ2 [117–119].
Like TNF-α, IL-6 may inhibit adipocyte differentiation [101].
Furthermore, TNF-α has been shown to induce apoptosis in
both human pre-adipocytes and mature adipocytes [120]. These
TNF-α-induced effects together may result in enlargement of
remaining fat cells and, consequently, a reduced adipose tissue
lipid buffering capacity and further impairment of adipokine
secretion, leading to insulin resistance as discussed earlier.
Secondly, certain adipokines may affect lipid metabolism
directly. TNF-α increases lipolysis in human and 3T3-L1
adipocytes, which appears to be mediated by activation of the
extracellular signal-related kinase pathway and reduction in
protein expression of perilipin [121–123], which is an
adipocyte protein that coats the lipid storage droplet, thereby
acting as gatekeeper to hydrolysis of the lipid droplet [124]. In
addition, IL-6 has been shown to stimulate lipolysis in vivo in
humans [125]. Therefore, these local effects on adipose tissue
lipolysis may contribute to the development of insulin
resistance by promoting the release of fatty acids from adipose
tissue into the circulation, which may then result in lipid
accumulation and insulin resistance in other tissues such as
skeletal muscle and liver. Furthermore, decreased adiponectin
concentrations may have detrimental effects on fat oxidation,
since it has been demonstrated that adiponectin increases fat
oxidation via activation of AMP-activated protein kinase in rat
skeletal muscle and C2C12 myocytes [126–128]. Thirdly, there
seems to be cross-talk between insulin receptor signalling and
inflammatory pathways [113,116]. TNF-α can impair insulin
sensitivity by triggering different key steps in the insulin
signalling pathway in rodent skeletal muscle [129,130].
Furthermore, both in vitro (C2C12 myocytes) and in vivo
experiments in rodent suggest that a reduction in adiponectin
concentration may decrease skeletal muscle glucose uptake
[127,131,132] and increase gluconeogenesis [128].

In conclusion, there is substantial evidence for the concept
that local inflammation in the expanded adipose tissue mass in
obese individuals is at least partly responsible for obesity-
related insulin resistance. However, it is important to note that
the effects of adipokines on metabolism and insulin sensitivity
are generally studied in isolation, which makes it difficult to
predict the interactive effects and the net impact on insulin
sensitivity in vivo in humans. The mechanisms underlying the
low-grade inflammation that is often present in obesity are not
yet well understood, but recent data indicate that adipose tissue
of obese individuals is infiltrated by macrophages, which may
be a major source of locally-produced pro-inflammatory
adipokines [133,134].

7. Adipose tissue inflammation and macrophage infiltration

Adipose tissue is a heterogeneous tissue containing different
cell types, including mature adipocytes, pre-adipocytes, endo-
thelial cells, vascular smooth muscle cells, leukocytes, mono-
cytes and macrophages. Due to this heterogeneity, several
studies have been performed to establish the cellular origin of
the adipokines that are expressed in adipose tissue. Macro-
phages are now recognized as important non-adipocyte cells
that contribute to adipose tissue production of inflammatory
factors. In fact, it has been reported that non-adipocyte cells in
adipose tissue are responsible for the majority of inflammatory
factors secreted by this tissue, except for leptin and adiponectin
that are primarily secreted by adipocytes [135]. However, it is
important to note that these findings should be interpreted with
some caution, since it is not known whether quantitative
comparisons between cell fractions in vitro (following collage-
nase digestion and cell incubation) reflect the physiological
situation in vivo. Changes in adipocyte size and adipose tissue
mass result in physical changes in the surrounding tissue, which
may modulate adipocyte function as discussed earlier in this
review. Obese adipose tissue is characterized by progressive
infiltration by macrophages as obesity develops [133,134]. In
line with these findings, macrophage infiltration in adipose
tissue is positively associated with body mass index, adipocyte
size and insulin resistance [133,134,136–138]. In turn, weight-
loss induced a regression of adipocyte hypertrophy and
macrophage infiltration in adipose tissue, resulting in an
improvement of the inflammatory profile of gene expression
[136,139]. Therefore, macrophage infiltration in adipose tissue
in obesity could be integral to the inflammatory response in this
tissue. It is reasonable to assume that cross-talk between
adipocytes and macrophages is important in the development of
insulin resistance. Indeed, the effects of macrophage-secreted
factors on adipocytes may contribute significantly to the
systemic inflammation and insulin resistance associated with
obesity [140]. It has been shown that macrophage-secreted
factors impair human fat cell differentiation [141] and induce
inflammatory events in 3T3-L1 adipocytes by activating the
nuclear factor kappa B (NF-κB) pathway [140]. Macrophages
may have different phenotypes [142,143]. Although the
functional consequences are not yet completely evident, it
has recently been demonstrated that recruited adipose tissue
macrophages have unique (inflammatory) properties compared
with the resident adipose tissue macrophages [144], which may
imply that recruited rather than resident adipose tissue
macrophages are involved in the inflammatory response in
obesity.
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Do macrophages infiltrate adipose tissue and initiate the
inflammatory response or does the initial inflammatory
response emerge from the adipocyte and further propagate
with the recruitment of macrophages? Several studies have been
performed to elucidate the triggers for macrophage infiltration
in adipose tissue, which are probably multifactorial. It has
recently been demonstrated that monocyte chemoattractant
protein-1 (MCP-1) may play an important role in macrophage
infiltration in adipose tissue. MCP-1 is a chemokine and
member of the small inducible cytokine family, which plays a
role in monocyte and lymphocyte recruitment to sites of injury
and infection [145]. MCP-1 is produced by macrophages,
endothelial cells and adipocytes [146,147], and its expression is
closely related to the number of residing macrophages [148]. It
has been reported that MCP-1 expression in adipose tissue is
increased in obese rodents [149,150]. In addition, circulating
concentrations of MCP-1 are elevated in obese [146,151] and
diabetic individuals [152,153], and its concentration have been
found to decrease after weight-loss [154]. In vitro studies in
adipocytes and myocytes have shown that MCP-1 may induce
insulin resistance [149,155]. However, circulating concentra-
tions do not always correlate with obesity and diabetes [156].
Therefore, MCP-1 may predominantly exert local (autocrine/
paracrine) effects in adipose tissue rather than having a direct
systemic pathogenic role. The early timing of MCP-1
expression prior to that of other macrophage markers during
the development of obesity supports the idea that MCP-1 is
produced initially by cells other than macrophages [134].
Interestingly, in obesity, MCP-1 expression and/or secretion can
be stimulated by TNF-α, insulin, IL-6 and growth hormone in
pre-adipocytes and 3T3-L1 adipocytes [134,149,157,158],
whereas its secretion from human adipocytes is decreased by
stimuli that increase insulin sensitivity, including adiponectin
and TZD treatment [159,160]. Thus, alterations in adipokine
Fig. 4. Proposed mechanisms how adipose tissue dysfunction may play a crucial ro
Enlarged adipocytes, an impaired ATBF, adipose tissue hypoxia, local inflammation a
to disturbances in adipokine secretion and lipid accumulation in non-adipose tissue
resistance. ATBF, adipose tissue blood flow.
secretion may change MCP-1 expression and secretion, which
in turn could influence macrophage infiltration in adipose
tissue. Knockout studies have shown that C–C chemokine
receptor 2 (CCR2) and its ligand MCP-1 are required for
accumulation of macrophages in adipose tissue [161,162].
CCR2 and MCP-1 knockout mice both are characterized by
decreased adipose tissue macrophage infiltration, reduced pro-
inflammatory gene expression in adipose tissue, decreased
hepatic triacylglycerol content and improved insulin sensitivity
on a high-fat diet compared with wild-type animals [161,162].
In accordance with these observations, adipose tissue-specific
overexpression of MCP-1 increases adipose tissue macro-
phage content and decreases insulin sensitivity [161,163]. Thus,
MCP-1 seems to play an important role in macrophage infil-
tration in adipose tissue and may contribute to the development
of insulin resistance. Whatever the initial stimuli to recruit
macrophages into adipose tissue are, once these cells are present
in adipose tissue they, along with adipocytes and other cell
types, could perpetuate a vicious cycle of macrophage recruit-
ment and production of pro-inflammatory adipokines, which
may result in progressive loss of adipocyte function and devel-
opment of obesity-related insulin resistance (Fig. 4).

In conclusion, it seems unlikely that macrophages initiate
inflammation in adipose tissue. Rather, macrophages, and likely
other types of immune cells, are thought to amplify an inflam-
matory response that has already been established. Although the
precise mechanisms underlying the disturbances in adipokine
secretion and subsequent macrophage infiltration in adipose
tissue that are often present in obesity remain to be established,
it is highly likely that this relates to events within adipose tissue
itself. Interestingly, there is accumulating evidence to support
the view that adipose tissue hypoxia may play a major role in
obesity-related impairments in adipokine expression/secretion
and subsequent insulin resistance.
le in the pathogenesis of obesity-related insulin resistance and type 2 diabetes.
nd macrophage infiltration in adipose tissue seem to be interrelated, and may lead
s, which together may result in the development and/or progression of insulin
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8. Role for adipose tissue hypoxia in insulin resistance?

Epidemiological and clinical studies have shown that
obstructive sleep apnea (OSA) may contribute to the develop-
ment of insulin resistance [164–166], possibly via cycles of
intermittent hypoxia resulting from periodic collapse of the
upper airway during sleep. Epidemiological studies have
revealed an association between the degree of hypoxia and
insulin resistance [164–166]. Interestingly, intermittent hypoxia
causes acute insulin resistance in mice due to decreased skeletal
muscle glucose utilization [167]. Based on these findings it can
be speculated that hypoxia in certain tissues may induce insulin
resistance. Is it possible that adipose tissue hypoxia contributes
to obesity-related insulin resistance?

Adipocyte size increases up to 140–180 μm in diameter
during the development of obesity [168]. However, the capacity
for adipocyte hypertrophy is limited. The reason for this could
be that enlarged adipocytes endure less than adequate oxygen
supply, since the diffusion distance for oxygen is at most
100 μm [169]. In situations where oxygen availability does not
meet the demand of the surrounding tissue, hypoxia occurs. Is
there evidence that adipose tissue hypoxia is present in obesity?
Indeed, it has very recently been reported that white adipose
tissue of obese mice is hypoxic, as demonstrated both by
pimonidazole staining and a markedly increased lactate concen-
tration in adipose tissue [170]. These observations were
strengthened by measurements of hypoxia-inducible gene
expression, which appeared to be significantly elevated in the
obese animals [170]. In line with these findings, it has been
shown that weight-loss decreased the expression of hypoxia-
responsive genes [136].

What could be the cause of adipose tissue hypoxia in
obesity? It could be that oxygen pressure and/or oxygen content
of the blood is reduced in obese subjects. However, measure-
ments in arterial blood of obese and control mice showed no
differences in oxygen pressure, haemoglobin concentration or
oxygen saturation between both groups [170]. A more likely
explanation for adipose tissue hypoxia relates to blood flow
through this tissue. Observations that adipose tissue mass is
sensitive to angiogenesis inhibitors [171,172] and that adipo-
cytes secrete multiple angiogenic factors, including PAI-1,
leptin, matrix metalloproteinases and vascular endothelial
growth factor [172–175], suggest that adipose tissue develop-
ment and vascularization in this tissue are closely associated.
However, it has recently been suggested by Trayhurn and Wood
[176] that the expansion of adipose tissue mass during the
progressive development of obesity may lead to hypoxia in
certain parts of adipose tissue, because angiogenesis is
insufficient to maintain normoxia in the entire adipose tissue
depot. As will be discussed in more detail later in this section,
this may lead to increased production of inflammatory factors,
acute phase proteins, and angiogenic factors by adipose tissue in
obesity, the function of which is to increase blood flow and
vascularization, and these events may involve the key controller
of the cellular response to hypoxia, the transcription factor
hypoxia-inducible factor-1 (HIF-1) [176–178]. Thus, decreased
blood supply to adipose tissue may underlie adipose tissue
hypoxia in obesity (Fig. 4). It is well-established that ATBF per
unit tissue mass is reduced in obese humans [38–42] and
rodents [170,179]. It has been shown that both small and large
adipocytes of obese rodents are hypoxic, suggesting that local
hypoperfusion rather than adipocyte size is the main culprit for
adipose tissue hypoxia [170]. However, adipocyte size may be
related to local blood flow. An inverse relationship between
adipocyte size and ATBF has been found in dogs [180] and
rabbits [181], although data are less evident when blood flow is
expressed per adipocyte rather than per unit adipose tissue
weight [180,181]. In addition to disturbances in fasting ATBF
[38–42], the postprandial enhancement of ATBF is reduced in
obese subjects [40]. Therefore, it is tempting to speculate that an
impaired ATBF responsiveness to nutrient intake may worsen
adipose tissue hypoxia in the postprandial period.

The crux of the matter is whether adipose tissue hypoxia may
provide an important link between obesity and insulin
resistance? Hypoxic cells respond by altering gene expression
to ensure adaptation. Hypoxia leads to the expression of HIF-
1α, which when combined with HIF-1β forms the transcription
factor HIF-1 [182–184]. HIF-1 is a key regulator in the
response to alterations in oxygen tension and modulates the
expression of genes that are involved in angiogenesis,
erythropoiesis, inflammation and glucose metabolism
[175,182,184,185]. It has recently been shown that hypoxia
increased the expression of certain glucose transporters and
glucose transport in human adipocytes, which may lead to
disturbances in cellular glucose homeostasis [186]. Interesting-
ly, recent studies have demonstrated that hypoxia also
dysregulates the expression of several key adipokines. Adipo-
nectin and PPARγ mRNA expression were reduced, whereas
PAI-1 and visfatin mRNA expression were increased in hypoxic
3T3-L1 adipocytes compared with normoxic control cells
[170,187]. In accordance with these findings, hypoxia has
been reported to induce PAI-1 production and inhibit adipo-
nectin synthesis in 3T3-L1 adipocytes [188]. More recently, it
has been demonstrated that hypoxia, which induced HIF-1α
protein synthesis, evoked marked alterations in the expression
and secretion of inflammation-related adipokines in human
adipocytes [189]. Furthermore, adipose tissue hypoxia was
observed in dietary obese mice and was associated with
increased expression of inflammatory genes and decreased
expression of adiponectin. Weight-loss improved oxygenation
and reduced inflammation in these animals [190]. Although
these data do not provide evidence that HIF-1α is causally
involved in the modulation of adipokine expression, it is
interesting to note that chemically-induced hypoxia using
CoCl2, a known inducer of HIF-1α, evoked qualitatively
similar changes in adipokine gene expression in human
adipocytes as observed during hypoxia [189]. In addition,
both HIF-1α expression and macrophage infiltration in human
adipose tissue were shown to be increased in obesity and
reduced after weight-loss [136]. Furthermore, distinct changes
in gene expression occur in macrophages when they experience
hypoxia in vitro [191]. These include upregulation of molecules
required for macrophage survival, tissue revascularization and
recruitment and activation of more macrophages and other
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inflammatory cells [192]. These data suggest that adipose tissue
hypoxia modulates, either directly or indirectly via recruitment
of macrophages, adipokine expression and secretion, and may
therefore provide an important link between obesity and insulin
resistance (Fig. 4). Secondly, cell death may occur in response
to hypoxia. The severity of hypoxia determines whether cells
become apoptotic or adapt to hypoxia and survive. A hypoxic
environment devoid of nutrients prevents the cell undergoing
energy dependent apoptosis and cells become necrotic [193].
Interestingly, it has been shown that adipose tissue macrophages
are predominantly (N90%) localized to dead adipocytes that
exhibit features of necrosis. These macrophages fuse and form
syncytia that sequester and scavenge adipocyte debris. Further-
more, the frequency of adipocyte death was positively
associated with increased adipocyte size in obese mice and
humans and in hormone-sensitive lipase-deficient (HSL−/−)
mice, a mouse model of adipocyte hyperthrophy without
obesity [194]. Thus, there is indirect evidence that hypoxia-
induced adipocyte death may evoke macrophage infiltration in
adipose tissue of obese individuals (Fig. 4). Thirdly, it has been
shown that hypoxia inhibited adipocyte differentiation
[195,196]. Hypoxia-induced inhibition of adipocyte differenti-
ation appears to be mediated by the production of mitochondrial
reactive oxygen species [195], which is in line with previous
work demonstrating that mitochondrial reactive oxygen species
influence pre-adipocyte size [197]. Hypoxia-mediated inhibi-
tion of adipocyte differentiation was only partly dependent on
the presence of HIF-1α [195]. As discussed earlier, an impaired
adipocyte differentiation appears to be a precipitating factor in
the development of type 2 diabetes [49,50]. Finally, HIF-1-
independent adaptive responses that may relate to insulin
resistance occur under hypoxic conditions. It has been shown
that unfolded protein response (UPR), a HIF-1-independent
signalling pathway, contributes to cellular adaptation to hypoxia
[198]. Newly synthesized proteins are folded and assembled by
chaperones in the endoplasmatic reticulum (ER) [199]. Many
disturbances, including hypoxia, cause accumulation of unfold-
ed proteins in the ER [198,200], leading to ER stress [195,201].
It has been demonstrated that ER stress is elevated in adipose
tissue and liver of obese mice, which activates the inflammatory
response, thereby contributing to insulin resistance [202,203].
In line with these observations, hypoxia induced ER stress in
human adipocytes, which in turn suppressed adiponectin
mRNA expression [170].

In conclusion, adipose tissue hypoxia, possibly due to an
impaired ATBF as a consequence of adipose tissue expansion,
may be an important trigger for the induction of insulin resis-
tance in obesity via effects on adipokine expression and/or
adipocyte differentiation (Fig. 4).

9. Summary and perspectives

Abdominal obesity is strongly associated with insulin resis-
tance and the development of type 2 diabetes and cardiovascular
disease. Enormous progress has been made over the past few
years in the attempt to understand the mechanisms underlying
obesity-related insulin resistance. It is now well-recognized that
adipose tissue is a highly active metabolic and endocrine organ.
Adipocytes are of crucial importance in buffering the daily
influx of dietary fat and exert autocrine, paracrine and/or
endocrine effects by secreting a variety of factors. In this review,
different aspects of adipose tissue dysfunction have been
discussed, and it has been postulated how these aspects may be
interrelated and could play a crucial role in the pathogenesis of
obesity-related insulin resistance and type 2 diabetes, as
summarized in Fig. 4. A rapidly emerging body of evidence
suggests that enlargement of adipocytes, an impaired ATBF,
adipose tissue hypoxia, local inflammation and macrophage
infiltration in adipose tissue are interrelated and may lead to
disturbances in adipokine secretion and excessive fat storage in
non-adipose tissues, which together may result in insulin
resistance and ultimately type 2 diabetes. A key question is
which mechanism(s) may underlie the sensing of adipocyte
enlargement. Local hypoxia due to an inadequate blood flow
through adipose tissue may be an important sensing mechanism
of adipocyte hypertrophy. Alternatively, it may well be that
certain signalling pathways within the adipocyte are triggered
(e.g. by lipotoxicity) when the lipid droplets have reached a
certain size, thereby preventing further enlargement of the
adipocyte. Future research should be aimed at elucidating the
sequelae of events that occur during the development and
progression of adipose tissue dysfunction and how exactly these
disturbances are linked. Unravelling the underlying mechan-
isms of obesity-related insulin resistance may increase the
rationale for strategies to prevent and/or treat type 2 diabetes
and may yield new pharmaceutical targets.
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